30 resultados para self-generative learning
em Aston University Research Archive
Resumo:
Self-leadership is a concept from the organisational and management literature broadly combining processes of self-goal setting, self-regulation and self-motivation. Research has typically focused on the impact of self-leadership on work performance outcomes, with little attention to potential benefits for learning and development. In this paper, we employ a longitudinal design to examine the association of a number of processes of self-leadership with higher educational attainment in a sample of business students (N = 150). Self-reported use of strategies related to behavioural, cognitive and motivational aspects of self-leadership were measured in the first semester of the academic year, and correlated with end-of year grade point average. We found that in particular, self-goal setting, pro-active goal-related behaviour, behaviour regulation and direction, motivational awareness, and optimism were all significant predictors of educational attainment. We discuss implications for educational research and for teachers and tutors in practice.
Resumo:
This investigation seeks to explore the hypothesis, derived from observation and practice, that there is a strong relationship between the development of literacy skills and the growth of confidence in adult literacy students. Implicit in the developmental approach is the notion of progression towards some cognitive goal. Such a goal necessitates the establishment of a base line of existing attainment, together with subsequent assessment so that progress and development can be measured. The study includes an evaluation of existing formal and informal methods of initial and subsequent assessment and diagnosis available at the time for Adult Literacy Scheme Co-ordinators. Underlying the funding by Cheshire County Council for the project is the assumption that the results will be available for all practitioners and that the tools of measurement may be used by other Adult Literacy Co-ordinators in the County. It is intended, therefore, that this research should result in practical outcomes in which methods of assessment will involve active participation by students as well as by tutors, becoming part of the learning process. It is hypothesised that this kind of co-operation could lead ultimately to self-directed learning and student-independence. For the purposes of this research, a balance is attempted in the use of assessment tools, between standardised tests and informal methods. The study provides facts about students! reading habits; as well as their reading levels, their spelling levels, their handwriting, their writing skills and their writing habits. The study seeks to show the students' feelings towards education, their educational attainments and the type of school which they attended. The study also attempts to come to some measurement of those aspects of student personality which relate to confidence, by means of tests and questionnaires. The study concludes with an examination of the link between cognitive and affective progress.
Resumo:
Teaching Speaking A Holistic Approach brings together theoretical and pedagogical perspectives on teaching speaking within a coherent methodological framework. The framework combines understandings derived from several areas of speaking research and instruction including cognitive and affective processes, oracy for thinking and learning communicative competence, discourse theories, task-based language learning, and self-regulated learning. By explaining, interpreting, evaluating, and synthesizing these diverse perspectives from linguistics and language learning, the text offers a comprehensive and versatile approach for teaching speaking. Samples of authentic classroom data are used for illustrating important concepts to help readers see how theoretical perspectives can be applied in practice. It also includes a pedagogical model for sequencing learning activities with concrete guidelines on planning and conducting speaking lessons. Different types of learning tasks are explained and illustrated with examples, and each chapter includes short tasks and ends with a number of tasks that enable readers to extend their ideas.
Resumo:
This thesis describes the Generative Topographic Mapping (GTM) --- a non-linear latent variable model, intended for modelling continuous, intrinsically low-dimensional probability distributions, embedded in high-dimensional spaces. It can be seen as a non-linear form of principal component analysis or factor analysis. It also provides a principled alternative to the self-organizing map --- a widely established neural network model for unsupervised learning --- resolving many of its associated theoretical problems. An important, potential application of the GTM is visualization of high-dimensional data. Since the GTM is non-linear, the relationship between data and its visual representation may be far from trivial, but a better understanding of this relationship can be gained by computing the so-called magnification factor. In essence, the magnification factor relates the distances between data points, as they appear when visualized, to the actual distances between those data points. There are two principal limitations of the basic GTM model. The computational effort required will grow exponentially with the intrinsic dimensionality of the density model. However, if the intended application is visualization, this will typically not be a problem. The other limitation is the inherent structure of the GTM, which makes it most suitable for modelling moderately curved probability distributions of approximately rectangular shape. When the target distribution is very different to that, theaim of maintaining an `interpretable' structure, suitable for visualizing data, may come in conflict with the aim of providing a good density model. The fact that the GTM is a probabilistic model means that results from probability theory and statistics can be used to address problems such as model complexity. Furthermore, this framework provides solid ground for extending the GTM to wider contexts than that of this thesis.
Resumo:
In ensuring the quality of learning and teaching in Higher Education, self-evaluation is an important component of the process. An example would be the approach taken within the CDIO community whereby self-evaluation against the CDIO standards is part of the quality assurance process. Eight European universities (Reykjavik University, Iceland; Turku University of Applied Sciences, Finland; Aarhus University, Denmark; Helsinki Metropolia University of Applied Sciences, Finland; Ume? University, Sweden; Telecom Bretagne, France; Aston University, United Kingdom; Queens University Belfast, United Kingdom) are engaged in an EU funded Erasmus + project that is exploring the quality assurance process associated with active learning. The development of a new self-evaluation framework that feeds into a ?Marketplace? where participating institutions can be paired up and then engage in peer evaluations and sharing around each institutions approach to and implementation of active learning. All of the partner institutions are engaged in the application of CDIO within their engineering programmes and this has provided a common starting point for the partnership to form and the project to be developed. Although the initial focus will be CDIO, the longer term aim is that the approach could be of value beyond CDIO and within other disciplines. The focus of this paper is the process by which the self-evaluation framework is being developed and the form of the draft framework. In today?s Higher Education environment, the need to comply with Quality Assurance standards is an ever present feature of programme development and review. When engaging in a project that spans several countries, the wealth of applicable standards and guidelines is significant. In working towards the development of a robust Self Evaluation Framework for this project, the project team decided to take a wide view of the available resources to ensure a full consideration of different requirements and practices. The approach to developing the framework considered: a) institutional standards and processes b) national standards and processes e.g. QAA in the UK c) documents relating to regional / global accreditation schemes e.g. ABET d) requirements / guidelines relating to particular learning and teaching frameworks e.g. CDIO. The resulting draft self-evaluation framework is to be implemented within the project team to start with to support the initial ?Marketplace? pairing process. Following this initial work, changes will be considered before a final version is made available as part of the project outputs. Particular consideration has been paid to the extent of the framework, as a key objective of the project is to ensure that the approach to quality assurance has impact but is not overly demanding in terms of time or paperwork. In other words that it is focused on action and value added to staff, students and the programmes being considered.
Resumo:
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
The Self-Organizing Map (SOM) algorithm has been extensively studied and has been applied with considerable success to a wide variety of problems. However, the algorithm is derived from heuristic ideas and this leads to a number of significant limitations. In this paper, we consider the problem of modelling the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. We introduce a novel form of latent variable model, which we call the GTM algorithm (for Generative Topographic Mapping), which allows general non-linear transformations from latent space to data space, and which is trained using the EM (expectation-maximization) algorithm. Our approach overcomes the limitations of the SOM, while introducing no significant disadvantages. We demonstrate the performance of the GTM algorithm on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
Latent variable models represent the probability density of data in a space of several dimensions in terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysis which is based on a linear transformations between the latent space and the data space. In this paper we introduce a form of non-linear latent variable model called the Generative Topographic Mapping, for which the parameters of the model can be determined using the EM algorithm. GTM provides a principled alternative to the widely used Self-Organizing Map (SOM) of Kohonen (1982), and overcomes most of the significant limitations of the SOM. We demonstrate the performance of the GTM algorithm on a toy problem and on simulated data from flow diagnostics for a multi-phase oil pipeline.
Resumo:
The generative topographic mapping (GTM) model was introduced by Bishop et al. (1998, Neural Comput. 10(1), 215-234) as a probabilistic re- formulation of the self-organizing map (SOM). It offers a number of advantages compared with the standard SOM, and has already been used in a variety of applications. In this paper we report on several extensions of the GTM, including an incremental version of the EM algorithm for estimating the model parameters, the use of local subspace models, extensions to mixed discrete and continuous data, semi-linear models which permit the use of high-dimensional manifolds whilst avoiding computational intractability, Bayesian inference applied to hyper-parameters, and an alternative framework for the GTM based on Gaussian processes. All of these developments directly exploit the probabilistic structure of the GTM, thereby allowing the underlying modelling assumptions to be made explicit. They also highlight the advantages of adopting a consistent probabilistic framework for the formulation of pattern recognition algorithms.
Resumo:
An interactive hierarchical Generative Topographic Mapping (HGTM) ¸iteHGTM has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: bf (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in ¸iteKabanpami. bf (2) We give the user a choice of initializing the child plots of the current plot in either em interactive, or em automatic mode. In the interactive mode the user interactively selects ``regions of interest'' as in ¸iteHGTM, whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTMs is employed. bf (3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.
Resumo:
It is well known that even slight changes in nonuniform illumination lead to a large image variability and are crucial for many visual tasks. This paper presents a new ICA related probabilistic model where the number of sources exceeds the number of sensors to perform an image segmentation and illumination removal, simultaneously. We model illumination and reflectance in log space by a generalized autoregressive process and Hidden Gaussian Markov random field, respectively. The model ability to deal with segmentation of illuminated images is compared with a Canny edge detector and homomorphic filtering. We apply the model to two problems: synthetic image segmentation and sea surface pollution detection from intensity images.
Resumo:
In order to reverse the use of lecture-based teaching, it is argued that personal reflection can be used as part of the quality assurance process. This paper proposes one response to personal reflection - reflective imagination, which is summarised as an action plan with six activities. It combines two conceptual issues raised in the US, the need to think creatively about learning and the reflective mindset, and one issue raised in the UK, cultivating the entrepreneurial imagination. Reflective imagination is linked to wider social science research, the place of self and reflexivity in scholarship. Finally, a personal history case study is presented which records a visit to Harvard Business School. The visit implements the six activities associated with reflective imagination. This is a method paper exploring reflective imagination.
Resumo:
Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N=137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.
Resumo:
Purpose - This article examines the internationalisation of Tesco and extracts the salient lessons learned from this process. Design/methodology/ approach - This research draws on a dataset of 62 in-depth interviews with key executives, sell- and buy-side analysts and corporate advisers at the leading investment banks in the City of London to detail the experiences of Tesco's European expansion. Findings - The case study of Tesco illuminates a number of different dimensions of the company's international experience. It offers some new insights into learning in international distribution environments such as the idea that learning is facilitated by uncertainty or "shocks" in the international retail marketplace; the size of the domestic market may inhibit change and so disable international learning; and learning is not necessarily facilitated by step-by-step incremental approaches to expansion. Research limitations/implications - The paper explores learning from a rather broad perspective, although it is hoped that these parameters can be used to raise a new set of more detailed priorities for future research on international retail learning. It is also recognised that the data gathered for this case study focus on Tesco's European operations. Practical implications - This paper raises a number of interesting issues such as whether the extremities of the business may be a more appropriate place for management to experiment and test new retail innovations, and the extent to which retailers take self-reflection seriously. Originality/value - The paper applies a new theoretical learning perspective to capture the variety of experiences during the internationalisation process, thus addressing a major gap in our understanding of the whole internationalisation process. © Emerald Group Publishing Limited.
Resumo:
This paper examines the extent to which a learning organisation perspective is attainable in small- to medium-sized manufacturing companies. An audit tool is developed from the literature on organisational learning and recognised processes that lead towards becoming a learning organisation. The paper focuses on the application of the audit tool in three UK automotive component suppliers which are all experiencing pressures for change imposed by the major vehicle manufacturers. The main changes are concerned with tiering of the supply chain and substantial delegation of responsibilities to component suppliers including an increasing emphasis on innovation and continuous improvement. The companies presented in the paper are taken from a research project into the impact of changes in supply chain relationships on the operation of small- and medium-sized manufacturing firms in the West Midlands region of the UK. The ways in which the companies are responding to change are presented together with the results of a self-assessment using the developed audit tool. These results suggest that companies of this type tend to focus on change in those areas that involve least challenge to the established power and authority of management.