18 resultados para self-focusing
em Aston University Research Archive
Resumo:
We propose to exploit a self-focusing effect in the atmosphere to assist delivering powerful laser beams from orbit to the ground. We demonstrate through numerical modeling that when the self-focusing length is comparable with the atmosphere height the spot size on the ground can be reduced well below the diffraction limits without beam quality degradation. The density variation suppresses beam filamentation and provides the self-focusing of the beam as a whole. The use of light self-focusing in the atmosphere can greatly relax the requirements for the orbital optics and ground receivers.
Resumo:
A ground-based laser system for space-debris cleaning will use powerful laser pulses that can self-focus while propagating through the atmosphere. We demonstrate that for the relevant laser parameters, this self-focusing can noticeably decrease the laser intensity on the target. We show that the detrimental effect can be, to a great extent, compensated for by applying the optimal initial beam defocusing. The effect of laser elevation on the system performance is discussed.
Resumo:
Ultra-high power (exceeding the self-focusing threshold by more than three orders of magnitude) light beams from ground-based laser systems may find applications in space-debris cleaning. The propagation of such powerful laser beams through the atmosphere reveals many novel interesting features compared to traditional light self-focusing. It is demonstrated here that for the relevant laser parameters, when the thickness of the atmosphere is much shorter than the focusing length (that is, of the orbit scale), the beam transit through the atmosphere in lowest order produces phase distortion only. This means that by using adaptive optics it may be possible to eliminate the impact of self-focusing in the atmosphere on the laser beam. The area of applicability of the proposed "thin window" model is broader than the specific physical problem considered here. For instance, it might find applications in femtosecond laser material processing.
Resumo:
Self-attention research has demonstrated a relationship between dispositional self-focus, anxiety proneness and fear arousal. In addition, the effect of self-focus manipulations on approach-avoidance tasks involving a feared stimulus are strikingly similar to the effects obtained from manipulation of other cognitive factors such as perceived self-efficacy. A number of experiments were designed to explore the relationship between self-focused attention and ffilxiety. Data from the experiments demonstrate that self-attention influences a variety of cognitive variables which have been considered as central factors in anxiety. Concomitants of self-focus are increased awareness of physiological arousal and overestimation of such arousal, the identification of self-discrepancies, cognitive failures and performance deficits and the activation of physical threat concepts in memory. These factors are conceptualised as central in the negative evaluation of physiological arousal and coping resources in anxiety. Clinically anxious individuals typically have high scores in dispositional self-consciousness and body-consciousness. In patients suffering from generalised anxiety or panic disorders maladaptive self-focusing tendencies can be related to specific life stressors which render aspects of the self salient. An analysis of the ideational component of anxiety revealed three subcomponents; negative social ideation (worry about other people's reaction to the self), negative somatic ideation (worry about physical symptoms and health) and obsessional ideation (the experience of uncontrollable and repetitive thoughts) which were differentially associated with measures of dispositional self-focus. The frequency and content of an.xious w-orry is associated with specific self-focusing tendencies. It is proposed that the 'attentional style' of the individual is an important determinant of the nature and intensity of their affective response in a threatening situation. A self-attentional model of anxiety is proposed and the complex interaction between self-focus and other cognitive factors in anxiety such as appraisal of arousal and coping resources and perceived levels of self-efficacy is discussed. The model presents new directions for research and therapeutic intervention in anxiety.
Resumo:
Since 1996 direct femtosecond inscription in transparent dielectrics has become the subject of intensive research. This enabling technology significantly expands the technological boundaries for direct fabrication of 3D structures in a wide variety of materials. It allows modification of non-photosensitive materials, which opens the door to numerous practical applications. In this work we explored the direct femtosecond inscription of waveguides and demonstrated at least one order of magnitude enhancement in the most critical parameter - the induced contrast of the refractive index in a standard borosilicate optical glass. A record high induced refractive contrast of 2.5×10-2 is demonstrated. The waveguides fabricated possess one of the lowest losses, approaching level of Fresnel reflection losses at the glassair interface. High refractive index contrast allows the fabrication of curvilinear waveguides with low bend losses. We also demonstrated the optimisation of the inscription regimes in BK7 glass over a broad range of experimental parameters and observed a counter-intuitive increase of the induced refractive index contrast with increasing translation speed of a sample. Examples of inscription in a number of transparent dielectrics hosts using high repetition rate fs laser system (both glasses and crystals) are also presented. Sub-wavelength scale periodic inscription inside any material often demands supercritical propagation regimes, when pulse peak power is more than the critical power for selffocusing, sometimes several times higher than the critical power. For a sub-critical regime, when the pulse peak power is less than the critical power for self-focusing, we derive analytic expressions for Gaussian beam focusing in the presence of Kerr non-linearity as well as for a number of other beam shapes commonly used in experiments, including astigmatic and ring-shaped ones. In the part devoted to the fabrication of periodic structures, we report on recent development of our point-by-point method, demonstrating the shortest periodic perturbation created in the bulk of a pure fused silica sample, by using third harmonics (? =267 nm) of fundamental laser frequency (? =800 nm) and 1 kHz femtosecond laser system. To overcome the fundamental limitations of the point-by-point method we suggested and experimentally demonstrated the micro-holographic inscription method, which is based on using the combination of a diffractive optical element and standard micro-objectives. Sub-500 nm periodic structures with a much higher aspect ratio were demonstrated. From the applications point of view, we demonstrate examples of photonics devices by direct femtosecond fabrication method, including various vectorial bend-sensors fabricated in standard optical fibres, as well as a highly birefringent long-period gratings by direct modulation method. To address the intrinsic limitations of femtosecond inscription at very shallow depths we suggested the hybrid mask-less lithography method. The method is based on precision ablation of a thin metal layer deposited on the surface of the sample to create a mask. After that an ion-exchange process in the melt of Ag-containing salts allows quick and low-cost fabrication of shallow waveguides and other components of integrated optics. This approach covers the gap in direct fs inscription of shallow waveguide. Perspectives and future developments of direct femtosecond micro-fabrication are also discussed.
Resumo:
This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics
Resumo:
We present theoretical and numerical analysis of the femtosecond processing of silica by laser beam with power below self-focusing threshold.
Resumo:
Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.
Resumo:
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input. We also study the averaged spectral density of random quasilinear waves generated in the NLSE channel for two models of the disordered input field profile. The first model is symmetric complex Gaussian white noise and the second one is a real dichotomous (telegraph) process. For the former model, the closed-form expression for the averaged spectral density is obtained, while for the dichotomous real input we present the small noise perturbative expansion for the same quantity. In the case of the dichotomous input, we also obtain the distribution of minimal pulse width required for a soliton generation. The obtained results can be applied to a multitude of problems including random nonlinear Fraunhoffer diffraction, transmission properties of randomly apodized long period Fiber Bragg gratings, and the propagation of incoherent pulses in optical fibers.
Resumo:
This paper describes experimental and numerical results of the plasma-assisted microfabrication of subwavelength structures by means of point-by point femtosecond laser inscription. It is shown that the spatio-temporal evolution of light and plasma patterns critically depend on input power. Subwavelength inscription corresponds to the supercritical propagation regimes when pulse power is several times self-focusing threshold. Experimental and numerical profiles show quantitative agreement.
Resumo:
Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.
Resumo:
This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics
Resumo:
We present theoretical and numerical analysis of the femtosecond processing of silica by laser beam with power below self-focusing threshold. © 2006 IEEE.
Resumo:
Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.
Resumo:
This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.