24 resultados para self-adaption two-control stabilization
em Aston University Research Archive
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities.
Resumo:
This thesis presents experimental investigations of the use of semiconductor optical amplifiers in a nonlinear loop mirror (SOA-NOLM) and its application in all-optical processing. The techniques used are mainly experimental and are divided into three major applications. Initially the semiconductor optical amplifier, SOA, is experimentally characterised and the optimum operating condition is identified. An interferometric switch based on a Sagnac loop with the SOA as the nonlinear element is employed to realise all-optical switching. All-optical switching is a very attractive alternative to optoelectronic conversion because it avoids the conversion from the optical to the electronic domain and back again. The first major investigation involves a carrier suppressed return to zero, CSRZ, format conversion and transmission. This study is divided into single channel and four channel WDM respectively. The optical bandwidth which limits the conversion is investigated. The improvement of the nonlinear tolerance in the CSRZ transmission is shown which shows the suitability of this format for enhancing system performance. Second, a symmetrical switching window is studied in the SOA-NOLM where two similar control pulses are injected into the SOA from opposite directions. The switching window is symmetric when these two control pulses have the same power and arrive at the same time in the SOA. Finally, I study an all-optical circulating shift register with an inverter. The detailed behaviour of the blocks of zeros and ones has been analysed in terms of their transient measurement. Good agreement with a simple model of the shift register is obtained. The transient can be reduced but it will affect the extinction ratio of the pulses.
Resumo:
We review recent developments in the use of optical solitons for communication systems spanning transoceanic distances. The implementation of "soliton control" to alleviate the detrimental impact of effects such as amplifier noise is shown to be critical for obtaining advantages over competing technologies. The potential performance of two control strategies, namely straight line filtering and synchronous phase modulation, is examined in detail. Design diagrams are used to determine the maximum permissible amplifier spacing, which is a key determinant of system economics. To focus the enquiry, two example system spans are taken, representing transatlantic and transpacific distances. It is concluded that straight line filtering provides very little improvement over a basic design without control. However synchronous phase modulation, which may be implemented using a handful of actively driven components, provides very substantial benefits. These may be used either to extend the overall bit-rate-distance product of the system or to increase the amplifier spacing at more moderate capacities. © 1995 Academic Press. All rights reserved.
Resumo:
We investigated 50 young patients with a diagnosis of Rolandic Epilepsy (RE) for the presence of abnormalities in autonomic tone compared with 50 young patients with idiopathic generalized epilepsy with absences and 50 typically developing children of comparable age. We analyzed time domain (N-N interval, pNN50) and frequency domain (High Frequency (HF), Low Frequency (LF) and LF/HF ratio) indices from ten-minute resting EKG activity. Patients with RE showed significantly higher HF and lower LF power and lower LF/HF ratio than controls, independent of the epilepsy group, and did not show significant differences in any other autonomic index with respect to the two control groups. In RE, we found a negative relationship between both seizure load and frequency of sleep interictal EEG abnormalities with parasympathetic drive levels. These changes might be the expression of adaptive mechanisms to prevent the excessive sympathetic drive seen in patients with refractory epilepsies. © 2012 Elsevier Inc.
Resumo:
Self-adaptive systems (SASs) should be able to adapt to new environmental contexts dynamically. The uncertainty that demands this runtime self-adaptive capability makes it hard to formulate, validate and manage their requirements. QuantUn is part of our longer-term vision of requirements reflection, that is, the ability of a system to dynamically observe and reason about its own requirements. QuantUn's contribution to the achievement of this vision is the development of novel techniques to explicitly quantify uncertainty to support dynamic re-assessment of requirements and therefore improve decision-making for self-adaption. This short paper discusses the research gap we want to fill, present partial results and also the plan we propose to fill the gap.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
Our understanding of early spatial vision owes much to contrast masking and summation paradigms. In particular, the deep region of facilitation at low mask contrasts is thought to indicate a rapidly accelerating contrast transducer (eg a square-law or greater). In experiment 1, we tapped an early stage of this process by measuring monocular and binocular thresholds for patches of 1 cycle deg-1 sine-wave grating. Threshold ratios were around 1.7, implying a nearly linear transducer with an exponent around 1.3. With this form of transducer, two previous models (Legge, 1984 Vision Research 24 385 - 394; Meese et al, 2004 Perception 33 Supplement, 41) failed to fit the monocular, binocular, and dichoptic masking functions measured in experiment 2. However, a new model with two-stages of divisive gain control fits the data very well. Stage 1 incorporates nearly linear monocular transducers (to account for the high level of binocular summation and slight dichoptic facilitation), and monocular and interocular suppression (to fit the profound 42 Oral presentations: Spatial vision Thursday dichoptic masking). Stage 2 incorporates steeply accelerating transduction (to fit the deep regions of monocular and binocular facilitation), and binocular summation and suppression (to fit the monocular and binocular masking). With all model parameters fixed from the discrimination thresholds, we examined the slopes of the psychometric functions. The monocular and binocular slopes were steep (Weibull ߘ3-4) at very low mask contrasts and shallow (ߘ1.2) at all higher contrasts, as predicted by all three models. The dichoptic slopes were steep (ߘ3-4) at very low contrasts, and very steep (ß>5.5) at high contrasts (confirming Meese et al, loco cit.). A crucial new result was that intermediate dichoptic mask contrasts produced shallow slopes (ߘ2). Only the two-stage model predicted the observed pattern of slope variation, so providing good empirical support for a two-stage process of binocular contrast transduction. [Supported by EPSRC GR/S74515/01]
Resumo:
The question of how to develop leaders so that they are more effective in a variety of situations, roles and levels has inspired a voluminous amount of research. While leader development programs such as executive coaching and 360-degree feedback have been widely practiced to meet this demand within organisations, the research in this area has only scratched the surface. Drawing from the past literature and leadership practices, the current research conceptualised self-regulation, as a metacompetency that would assist leaders to further develop the specific competencies needed to perform effectively in their leadership role, leading to an increased rating of leader effectiveness and to enhanced group performance. To test this conceptualisation, a longitudinal field experimental study was conducted across ten months with a pre- and two post-test intervention designs with a matched control group. This longitudinal field experimental compared the difference in leader and team performance after receiving self-regulation intervention that was delivered by an executive coach. Leaders in experimental group also received feedback reports from 360-degree feedback at each stage. Participants were 40 leaders, 155 followers and 8 supervisors. Leaders’ performance was measured using a multi-source perceptual measure of leader performance and objective measures of team financial and assessment performance. Analyses using repeated measure of ANCOVA on pre-test and two post-tests responses showed a significant difference between leader and team performance between experimental and control group. Furthermore, leader competencies mediated the relationship between self-regulation and performance. The implications of these findings for the theory and practice of leadership development training programs and the impact on organisational performance are discussed.
Resumo:
We report observations of the diffraction pattern resulting when a nematic liquid crystal is illuminated with two equal power, high intensity beams of light from an Ar+ laser. The time evolution of the pattern is followed from the initial production of higher diffraction orders to a final striking display arising as a result of the self-diffraction of the two incident beams. The experimental results are described with good approximation by a model assuming a phase distribution at the output plane of the liquid crystal in the form of the sum of a gaussian and a sinusoid.
Resumo:
This thesis describes an investigation into methods for controlling the mode distribution in multimode optical fibres. The major contributions presented in this thesis are summarised below. Emerging standards for Gigabit Ethernet transmission over multimode optical fibre have led to a resurgence of interest in the precise control, and specification, of modal launch conditions. In particular, commercial LED and OTDR test equipment does not, in general, comply with these standards. There is therefore a need for mode control devices, which can ensure compliance with the standards. A novel device consisting of a point-load mode-scrambler in tandem with a mode-filter is described in this thesis. The device, which has been patented, may be tuned to achieve a wide range of mode distributions and has been implemented in a ruggedised package for field use. Various other techniques for mode control have been described in this work, including the use of Long Period Gratings and air-gap mode-filters. Some of the methods have been applied to other applications, such as speckle suppression and in sensor technology. A novel, self-referencing, sensor comprising two modal groups in the Mode Power Distribution has been designed and tested. The feasibility of a two-channel Mode Group Diversity Multiplexed system has been demonstrated over 985m. A test apparatus for measuring mode distribution has been designed and constructed. The apparatus consists of a purpose-built video microscope, and comprehensive control and analysis software written in Visual Basic. The system may be fitted with a Silicon camera or an InGaAs camera, for measurement in the 850nm and 130nm transmission windows respectively. A limitation of the measurement method, when applied to well-filled fibres, has been identified and an improvement to the method has been proposed, based on modelled Laguerre Gauss field solutions.
Resumo:
In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.
Resumo:
With the rebirth of coherent detection, various algorithms have come forth to alleviate phase noise, one of the main impairments for coherent receivers. These algorithms provide stable compensation, however they limit the DSP. With this key issue in mind, Fabry Perot filter based self coherent optical OFDM was analyzed which does not require phase noise compensation reducing the complexity in DSP at low OSNR. However, the performance of such a receiver is limited due to ASE noise at the carrier wavelength, especially since an optical amplifier is typically employed with the filter to ensure sufficient carrier power. Subsequently, the use of an injection-locked laser (ILL) to retrieve the frequency and phase information from the extracted carrier without the use of an amplifier was recently proposed. In ILL based system, an optical carrier is sent along with the OFDM signal in the transmitter. At the receiver, the carrier is extracted from the OFDM signal using a Fabry-Perot tunable filter and an ILL is used to significantly amplify the carrier and reduce intensity and phase noise. In contrast to CO-OFDM, such a system supports low-cost broad linewidth lasers and benefits with lower complexity in the DSP as no carrier frequency estimation and correction along with phase noise compensation is required.