5 resultados para segmento cervical

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ossification of the posterior longitudinal ligament (OPLL) is a significantly critical pathology that can eventually cause serious myelopathy. Ossification commences in the vertebral posterior longitudinal ligaments, and intensifies and spreads with the progression of the disease, resulting in osseous projections and compression of the spinal cord. However, the paucity of histological studies the underlying mechanisms of calcification and ossification processes remain obscure. The pathological process could be simulated in the ossifying process of the ligament in mutant spinal hyperostotic mouse (twy/twy). The aim of this study is to observe that enlargement of the nucleus pulposus followed by herniation, disruption and regenerative proliferation of annulus fibrosus cartilaginous tissues participated in the initiation of ossification of the posterior longitudinal ligament of twy/twy mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cervical compressive myelopathy is the most serious complication of cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) and the most frequent cause of spinal cord dysfunction. There is little information on the exact pathophysiological mechanism responsible for the progressive loss of neural tissue in the spinal cord of such patients. In this study, we used the spinal hyperostotic mouse (twy/twy) as a suitable model of human spondylosis, and OPLL to investigate the cellular and molecular changes in the spinal cord. Mutant twy/twy mouse developed ossification of the ligamentum flavum at C2-C3 and exhibited progressive paralysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.