2 resultados para seasonal distribution alfalfa yield
em Aston University Research Archive
Resumo:
Soil erosion is one of the most pressing issues facing developing countries. The need for soil erosion assessment is paramount as a successful and productive agricultural base is necessary for economic growth and stability. In Ghana, a country with an expanding population and high potential for economic growth, agriculture is an important resource; however, most of the crop production is restricted to low technology shifting cultivation agriculture. The high intensity seasonal rainfall coincides with the early growing period of many of the crops meaning that plots are very susceptible to erosion, especially on steep sided valleys in the region south of Lake Volta. This research investigated the processes of soil erosion by rainfall with the aim of producing a sediment yield model for a small semi-agricultural catchment in rural Ghana. Various types of modelling techniques were considered to discover those most applicable to the sub-tropical environment of Southern Ghana. Once an appropriate model had been developed and calibrated, the aim was to look at how to enable the scaling up of the model using sub-catchments to calculate sedimentation rates of Lake Volta. An experimental catchment was located in Ghana, south west of Lake Volta, where data on rainstorms and the associated streamflow, sediment loads and soil data (moisture content, classification and particle size distribution) was collected to calibrate the model. Additional data was obtained from the Soil Research Institute in Ghana to explore calibration of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, 1978) for Ghanaian soils and environment. It was shown that the USLE could be successfully converted to provide meaningful soil loss estimates in the Ghanaian environment. However, due to experimental difficulties, the proposed theory and methodology of the sediment yield model could only be tested in principle. Future work may include validation of the model and subsequent scaling up to estimate sedimentation rates in Lake Volta.
Resumo:
The aim of this study was to test the hypothesis that differences in the pattern of seasonal growth in foliose lichens from year to year were determined by yearly differences in the distribution of rainfall, shortwave radiation and temperature. Hence, the radial growth of Parmelia conspersa (Ehrh. Ex Ach.) Ach. , P. glabratula ssp. fuliginosa (Fr. ex Duby) Laund. and Physcia orbicularis (Neck) Poetsch. was studied on slate fragments over 34 successive months in an area of South Gwynedd, Wales. U.K. Similarities and differences were observed in the pattern of seasonal growth in the three species. Periods of maximum growth of a species occurred in different seasons in successive years. Correlation and multiple regression analysis suggested that total rainfall per month was the most important climatic variable positively correlated with monthly growth. Significant positive correlations were found in some growth periods with number of raindays per month, average wind speed and maximum and minimum temperature. Total number of sunshine hours per month and the frequency of ground frosts were negatively correlated with monthly growth in some growth periods. For each species, monthly radial growth was correlated with different climatic variables in each growth period. Hence, the results support the hypothesis in that periods of maximum growth can occur in any season in South Gwynedd and depend on (1) the distribution of periods of high total rainfall and (2) whether or not these periods coincide with periods of maximum sunlight.