20 resultados para scanning electron microscope.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes have been imaged using a plethora of techniques. However, few of these methods offer the ability to study these systems in their natural hydrated state without the requirement of drying, staining, and fixation of the vesicles. However, the ability to image a liposome in its hydrated state is the ideal scenario for visualization of these dynamic lipid structures and environmental scanning electron microscopy (ESEM), with its ability to image wet systems without prior sample preparation, offers potential advantages to the above methods. In our studies, we have used ESEM to not only investigate the morphology of liposomes and niosomes but also to dynamically follow the changes in structure of lipid films and liposome suspensions as water condenses on to or evaporates from the sample. In particular, changes in liposome morphology were studied using ESEM in real time to investigate the resistance of liposomes to coalescence during dehydration thereby providing an alternative assay of liposome formulation and stability. Based on this protocol, we have also studied niosome-based systems and cationic liposome/DNA complexes. Copyright © Informa Healthcare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation looks critically at conventional magnetic lenses in the light of present-day technology with the aim of advancing electron microscopy in its broadest sense. By optimising the cooling arrangements and heat transfer characteristics of lens windings it was possible to increase substantially the current density in the winding, and achieve a large reduction in the size of conventional magnetic electron lenses. Following investigations into the properties of solenoidal lenses, a new type of lens with only one pole-piece was developed. The focal properties of such lenses, which differ considerably from those.of conventional lenses, have been derived from a combination of mathematical models and experimentally measured axial flux density distributions. These properties can be profitably discussed with reference to "half-lenses". Miniature conventional twin pole-piece lenses and the proposed radial field single pole-piece lenses have been designed and constructed and both types of lenses have been evaluated by constructing miniature electron optical columns. A miniature experimental transmission electron microscope (TEM), a miniature scanning electron microscope (SEM) and a scanning transmission microscope (STEM) have been built. A single pole-piece miniature one million volt projector lens of only lOcm diameter and weighing 2.lkg was designed, built and tested at 1 million volts in a commercial electron microscope. iii. Preliminary experiments indicate that in single pole lenses it is possible to extract secondary electrons from the specimen in spite of the presence of the magnetic field of the probe-forming lens. This may well be relevant for the SEM in which it is desirable to examine a large specimen at a moderately good resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicular adjuvant systems composing dimethyldioctadecylammonium (DDA) can promote both cell-mediated and humoral immune responses to the tuberculosis vaccine fusion protein in mice. However, these DDA preparations were found to be physically unstable, forming aggregates under ambient storage conditions. Therefore there is a need to improve the stability of such systems without undermining their potent adjuvanticity. To this end, the effect of incorporating non-ionic surfactants, such as 1-monopalmitoyl glycerol (MP), in addition to cholesterol (Chol) and trehalose 6,6′-dibehenate (TDB), on the stability and efficacy of these vaccine delivery systems was investigated. Differential scanning calorimetry revealed a reduction in the phase transition temperature (T c) of DDA-based vesicles by ∼12°C when MP and cholesterol (1:1 molar ratio) were incorporated into the DDA system. Transmission electron microscopy (TEM) revealed the addition of MP to DDA vesicles resulted in the formation of multi-lamellar vesicles. Environmental scanning electron microscopy (ESEM) of MP-Chol-DDA-TDB (16:16:4:0.5 μmol) indicated that incorporation of antigen led to increased stability of the vesicles, perhaps as a result of the antigen embedding within the vesicle bilayers. At 4°C DDA liposomes showed significant vesicle aggregation after 28 days, although addition of MP-Chol or TDB was shown to inhibit this instability. Alternatively, at 25°C only the MP-based systems retained their original size. The presence of MP within the vesicle formulation was also shown to promote a sustained release of antigen in-vitro. The adjuvant activity of various systems was tested in mice against three subunit antigens, including mycobacterial fusion protein Ag85b-ESAT-6, and two malarial antigens (Merozoite surface protein 1, MSP1, and the glutamate rich protein, GLURP). The MP- and DDA-based systems induced antibody responses at comparable levels whereas the DDA-based systems induced more powerful cell-mediated immune responses. © 2006 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp -content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research was undertaken to: develop a process for the direct solvent extraction of castor oil seeds. A literature survey confirmed the desirability of establishing such a process with emphasis on the decortication, size, reduction, detoxification-deallergenization, and solvent·extraction operations. A novel process was developed for the dehulling of castor seeds which consists of pressurizing the beans and then suddenly releasing the pressure to vaccum. The degree of dehulling varied according to the pressure applied and the size of the beans. Some of the batches were difficult-to-hull, and this phenomenon was investigated using the scanning electron microscope and by thickness and compressive strength measurements. The other variables studied to lesser degrees included residence time, moisture, content, and temperature.The method was successfully extended to cocoa beans, and (with modifications) to peanuts. The possibility of continuous operation was looked into, and a mechanism was suggested to explain the method works. The work on toxins and allergens included an extensive literature survey on the properties of these substances and the methods developed for their deactivation Part of the work involved setting up an assay method for measuring their concentration in the beans and cake, but technical difficulties prevented the completion of this aspect of the project. An appraisal of the existing deactivation methods was made in the course of searching for new ones. A new method of reducing the size of oilseeds was introduced in this research; it involved freezing the beans in cardice and milling them in a coffee grinder, the method was found to be a quick, efficient, and reliable. An application of the freezing technique was successful in dehulling soybeans and de-skinning peanut kernels. The literature on the solvent extraction, of oilseeds, especially castor, was reviewed: The survey covered processes, equipment, solvents, and mechanism of leaching. three solvents were experimentally investigated: cyclohexane, ethanol, and acetone. Extraction with liquid ammonia and liquid butane was not effective under the conditions studied. Based on the results of the research a process has been suggested for the direct solvent extraction of castor seeds, the various sections of the process have analysed, and the factors affecting the economics of the process were discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In weak argillaceous rocks the unweathered strength may be barely sufficient to meet civil engineering reguirements and any reductjon due to weathering will be critical. This study investigates the weathering of the Lower Lias clays with particular reference to their petrography and engineering properties. Investigations revealed the Midland Basin of deposition to contain reasonable thicknesses of clay, relatively uniform in nature with a well developed weathered zone, From the available exposures, the weathering zone of the Blockley Clay pit was selected and sampled for laboratory investigations of; Structure, Mineralogy and Chemistry and Engineering Properties. The nature and orientation of the fissures in the unweathered clay were analysed. A close relationship was found to exist between the major joint set and the ground surface, with stress release due to excavation being almost negligible. Thin sections of the clay, examined for structural data, suggested that there exist layers or areas that have been disturbed as a result of density differences. Shear planes were found in both the unweathered and weathered clay, in the latter case often associated with remoulding of the material. A direct measure of remoulding was obtained from the birefringence ratio. The fabric was examined in closer detail using the scanning electron microscope. Mineralogy, as revealed by X-ray and optical techniques indicated illite as the dominant clay mineral, with kaolinite subsidiary; quartz, calcite, pyrite, chlorite/vermiculite are present as accessory minerals. Weathering changes this relationship, calcite and pyrite being removed early in the process, with illite being degraded. The cementing action of calcite and iron oxides was investigated however, this was shown to be negligible. Quantitative measurements of both fixed (with minerals) and free (oxide coatings) iron were obtained by atomic absorption, with the Fe 3+/ Fe2+ ratio obtained by Mossbauer spectroscopy, Evidence indicates that free iron oxide coatings only become important as a result of weathering with the maximum concentration in the very highly weathered material. Engineering index properties and shear strength values were taken throughout the profile, Relationships between moisture content and strength, liquid limit and iron (Fe) were obtained and a correlation between the weathering zomes and the shear strength/depth curve has been established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation was undertaken to study the effect of poor curing simulating hot climatic conditions and remedies on the durability of steel in concrete. Three different curing environments were used i.e. (1) Saturated Ca(OH)2 solution at 20°C, (2) Saturated Ca(OH)2 solution at 50°C and (3) Air at 50°C at 30% relative humidity. The third curing condition corresponding to the temperature and relative humidity typical of Middle Eastern Countries. The nature of the hardened cement paste matrix, cured under the above conditions was studied by means of Mercury Intrusion Porosimetry for measuring pore size distribution. The results were represented as total pore volume and initial pore entry diameter. The Scanning Electron Microscope was used to look at morphological changes during hydration, which were compared to the Mercury Intrusion Porosimetry results. X-ray defraction and Differential Thermal Analysis techniques were also employed for looking at any phase transformations. Polymer impregnation was used to reduce the porosity of the hardened cement pastes, especially in the case of the poorly cured samples. Carbonation rates of unimpregnated and impregnated cements were determined. Chloride diffusion studies were also undertaken to establish the effect of polymer impregnation and blending of the cements. Finally the corrosion behaviour of embedded steel bars was determined by the technique of Linear Polarisation. The steel was embedded in both untreated and polymer impregnated hardened cement pastes placed in either a solution containing NaCl or an environmental cabinet which provided carbonation at 40°C and 50% relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.