40 resultados para scale up

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The procedure for successful scale-up of batchwise emulsion polymerisation has been studied. The relevant literature on liquid-liquid dispersion on scale-up and on emulsion polymerisation has been crit1cally reviewed. Batchwise emulsion polymerisation of styrene in a specially built 3 litre, unbaffled, reactor confirmed that impeller speed had a direct effect on the latex particle size and on the reaction rate. This was noted to be more significant at low soap concentrations and the phenomenon was related to the depletion of micelle forming soap by soap adsorption onto the monomer emulsion surface. The scale-up procedure necessary to maintain constant monomer emulsion surface area in an unbaffled batch reactor was therefore investigated. Three geometrically similar 'vessels of 152, 229 and 305mm internal diameter, and a range of impeller speeds (190 to 960 r.p.m.) were employed. The droplet sizes were measured either through photomicroscopy or via a Coulter Counter. The power input to the impeller was also measured. A scale-up procedure was proposed based on the governing relationship between droplet diameter, impeller speed and impeller diameter. The relationships between impeller speed soap concentration, latex particle size and reaction rate were investigated in a series of polymerisations employing an amended commercial recipe for polystyrene. The particle size was determined via a light transmission technique. Two computer models, based on the Smith and Ewart approach but taking into account the adsorption/desorption of soap at the monomer surface, were successful 1n predicting the particle size and the progress of the reaction up to the end of stage II, i.e. to the end of the period of constant reaction rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is concerned with the nature of liquid flow across industrial sieve trays operating in the spray, mixed, and the emulsified flow regimes. In order to overcome the practical difficulties of removing many samples from a commercial tray, the mass transfer process was investigated in an air water simulator column by heat transfer analogy. The temperature of the warm water was measured by many thermocouples as the water flowed across the single pass 1.2 m diameter sieve tray. The thermocouples were linked to a mini computer for the storage of the data. The temperature data were then transferred to a main frame computer to generate temperature profiles - analogous to concentration profiles. A comprehensive study of the existing tray efficiency models was carried out using computerised numerical solutions. The calculated results were compared with experimental results published by the Fractionation Research Incorporation (FRl) and the existing models did not show any agreement with the experimental results. Only the Porter and Lockett model showed a reasonable agreement with the experimental results for cenain tray efficiency values. A rectangular active section tray was constructed and tested to establish the channelling effect and the result of its effect on circular tray designs. The developed flow patterns showed predominantly flat profiles and some indication of significant liquid flow through the central region of the tray. This comfirms that the rectangular tray configuration might not be a satisfactory solution for liquid maldistribution on sieve trays. For a typical industrial tray the flow of liquid as it crosses the tray from the inlet to the outlet weir could be affected by the mixing of liquid by the eddy, momentum and the weir shape in the axial or the transverse direction or both. Conventional U-shape profiles were developed when the operating conditions were such that the froth dispersion was in the mixed regime, with good liquid temperature distribution while in the spray regime. For the 12.5 mm hole diameter tray the constant temperature profiles were found to be in the axial direction while in the spray regime and in the transverse direction for the 4.5 mm hole tray. It was observed that the extent of the liquid stagnant zones at the sides of the tray depended on the tray hole diameter and was larger for the 4.5 mm hole tray. The liquid hold-up results show a high liquid hold-up at the areas of the tray with low liquid temperatures, this supports the doubts about the assumptions of constant point efficiency across an operating tray. Liquid flow over the outlet weir showed more liquid flow at the centre of the tray at high liquid loading with low liquid flow at both ends of the weir. The calculated results of the point and tray efficiency model showed a general increase in the calculated point and tray efficiencies with an increase in the weir loading, as the flow regime changed from the spray to the mixed regime the point and the tray efficiencies increased from approximately 30 to 80%.Through the mixed flow regime the efficiencies were found to remain fairly constant, and as the operating conditions were changed to maintain an emulsified flow regime there was a decrease in the resulting efficiencies. The results of the estimated coefficient of mixing for the small and large hole diameter trays show that the extent of liquid mixing on an operating tray generally increased with increasing capacity factor, but decreased with increasing weir loads. This demonstrates that above certain weir loads, the effect of eddy diffusion mechanism on the process of liquid mixing on an operating tray to be negligible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regenerative medicine technologies have the potential to revolutionise human healthcare. However, whilst science has revealed the potential, and early products have shown the power of such therapies, there is now a need for the long-term supply of human stem cells in sufficient numbers to create reproducible and cost effective therapeutic products. The industrial platforms to be developed for human cell culture are in some ways analogous to those already developed for biopharmaceutical production using mammalian cells at large scales. However, there are a number of unique challenges that need to be addressed, largely because the quality of the cell is paramount, rather than the proteins that they express. © 2013 Elsevier Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Scale-up from shake flasks to bioreactors allows for the more reproducible, high-yielding production of recombinant proteins in yeast. The ability to control growth conditions through real-time monitoring facilitates further optimization of the process. The setup of a 3-L stirred-tank bioreactor for such an application is described. © 2012 Springer Science+business Media, LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foaming during fermentation reduces the efficiency of the process leading to increased costs and reduced productivity. Foaming can be overcome by the use of chemical antifoaming agents, however their influence upon the growth of organisms and protein yield is poorly understood. The objective of this work was to evaluate the effects of different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, P2000 and SB2121 were tested at different concentrations for their effect on the growth characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks compared to controls, at higher concentrations than would normally be used for defoaming purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR in shake flasks, suggesting that their effects may be protein specific. The mechanisms of action of the antifoams was investigated and suggested that although the volumetric mass oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the concentration of dissolved oxygen did not contribute to the changes in growth or recombinant protein yield. Findings in small scale also suggested that antifoams of different compositions such as silicone polymers and alcoxylated fatty acid esters may influence growth characteristics of host organisms and the ability of the cells to secrete recombinant protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations producing a higher yield. These data suggest that antifoam can affect cells in a multifactorial manner and highlights the importance of screening for optimum antifoam types and concentrations for each bioprocesses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The key to the use of polymersomes as effective molecular delivery systems is in the ability to design processing routes that can efficiently encapsulate the molecular payload. We have evaluated various surface rehydration mechanisms for encapsulation, in each case characterizing the morphologies formed using DLS and confocal microscopy as well as determining the encapsulation efficiency for the hydrophilic dye Rhodamine B. In contrast to bulk methods, where the encapsulation efficiencies are low, we find that higher efficiencies can be obtained by the rehydration of thin films. We relate these results to the non-equilibrium mechanisms that underlie vesicle formation and discuss how an understanding of these mechanisms can help optimize encapsulation efficiencies. Our conclusion is that, even considering the good encapsulation efficiency, surface methods are still unsuitable for the massive scale-up needed when applied to commercial mass market molecular delivery scenarios. However, targeting more specialized applications for high value ingredients (like pharmaceuticals) might be more feasible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to design, construct and commission a new ablative pyrolysis reactor and a high efficiency product collection system. The reactor was to have a nominal throughput of 10 kg/11r of dry biomass and be inherently scalable up to an industrial scale application of 10 tones/hr. The whole process consists of a bladed ablative pyrolysis reactor, two high efficiency cyclones for char removal and a disk and doughnut quench column combined with a wet walled electrostatic precipitator, which is directly mounted on top, for liquids collection. In order to aid design and scale-up calculations, detailed mathematical modelling was undertaken of the reaction system enabling sizes, efficiencies and operating conditions to be determined. Specifically, a modular approach was taken due to the iterative nature of some of the design methodologies, with the output from one module being the input to the next. Separate modules were developed for the determination of the biomass ablation rate, specification of the reactor capacity, cyclone design, quench column design and electrostatic precipitator design. These models enabled a rigorous design protocol to be developed capable of specifying the required reactor and product collection system size for specified biomass throughputs, operating conditions and collection efficiencies. The reactor proved capable of generating an ablation rate of 0.63 mm/s for pine wood at a temperature of 525 'DC with a relative velocity between the heated surface and reacting biomass particle of 12.1 m/s. The reactor achieved a maximum throughput of 2.3 kg/hr, which was the maximum the biomass feeder could supply. The reactor is capable of being operated at a far higher throughput but this would require a new feeder and drive motor to be purchased. Modelling showed that the reactor is capable of achieving a reactor throughput of approximately 30 kg/hr. This is an area that should be considered for the future as the reactor is currently operating well below its theoretical maximum. Calculations show that the current product collection system could operate efficiently up to a maximum feed rate of 10 kg/Fir, provided the inert gas supply was adjusted accordingly to keep the vapour residence time in the electrostatic precipitator above one second. Operation above 10 kg/hr would require some modifications to the product collection system. Eight experimental runs were documented and considered successful, more were attempted but due to equipment failure had to be abandoned. This does not detract from the fact that the reactor and product collection system design was extremely efficient. The maximum total liquid yield was 64.9 % liquid yields on a dry wood fed basis. It is considered that the liquid yield would have been higher had there been sufficient development time to overcome certain operational difficulties and if longer operating runs had been attempted to offset product losses occurring due to the difficulties in collecting all available product from a large scale collection unit. The liquids collection system was highly efficient and modeling determined a liquid collection efficiency of above 99% on a mass basis. This was validated due to the fact that a dry ice/acetone condenser and a cotton wool filter downstream of the collection unit enabled mass measurements of the amount of condensable product exiting the product collection unit. This showed that the collection efficiency was in excess of 99% on a mass basis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review of the literature of work carried out on dextransucrase production, purification, immobilization and reactions has been carried out. A brief review has also been made of the literature concerning general enzyme biotechnology and fermentation technology. Fed-batch fermentation of the bacteria Leuconostoc mesenteroides NRRL B512 (F) to produce dextransucrase has formed the major part of this research. Aerobic and anaerobic fermentations have been studied using a 16 litre New Brunswick fermenter which has a 3-12 litre working volume. The initial volume of broth used in the studies was 6 litres. The results of the fed-batch fermentations showed for the first time that yields of dextransucrase are much higher under the anaerobic conditions than during the aerobic fermentations. Dextransucrase containing 300-350 DSU/cm3 of enzyme activity has been obtained during the aerobic fermentations, while in the anaerobic fermentations, enzyme yields containing 450-500 DSU/cm3 have been obtained routinely. The type of yeast extract used in the fermentation medium has been found to have significant effects on enzyme yield. Of the different types studied, the Gistex Standard was found to be the type that favoured the highest enzyme production. Studies have also been carried out on the effect of agitation rate and antifoam on the enzyme production during the anaerobic experiments. Agitation rates of up to 600 rpm were found not to affect the enzyme yield, however, the presence of antifoam in the medium led to a significant reduction in enzyme activity (less than 300 DSU/cm3). Scale-up of the anaerobic fermentations has been performed at up to the 1000 litre level with enzyme yields containing more than 400 DSU/cm3 of activity being produced. Some of the enzyme produced at this scale was used for the first time to produce dextran on an industrial scale via the enzyme route, with up to 99% conversion of sucrose to dextran being obtained. An attempt has been made at continuous dextransucrase production. Cell washout was observed to occur at dilution rates of greater than 0.4 h-1. Dextransucrase containing up to 25 DSU/cm3/h has been produced continuously.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A literature review of work carried out on batch and continuous chromatographic biochemical reactor-separators has been made. The major part of this work has involved the development of a batch chromatographic reactor-separator for the production of dextran and fructose by the enzymatic action of the enzyme dextransucrase on sucrose. In this reactor, simultaneous reaction and separation occurs thus reducing downstream processing and isolation of products as compared to the existing industrial process. The chromatographic reactor consisted of a glass column packed with a stationary phase consisting of cross linked polysytrene resin in the calcium form. The mobile phase consisted of diluted dextransucrase in deionised water. Initial experiments were carried out on a reactor separtor which had an internal diameter of 0.97cm and length of 1.5m. To study the effect of scale up the reactor diameter was doubled to 1.94cm and length increased to 1.75m. The results have shown that the chromatographic reactor uses more enzyme than a conventional batch reactor for a given conversion of sucrose and that an increase in void volume results in higher conversions of sucrose. A comparison of the molecular weight distribution of dextran produced by the chromatographic reactor was made with that from a conventional batch reactor. The results have shown that the chromatographic reactor produces 30% more dextran of molecular weight greater than 150,000 daltons at 20% w/v sucrose concentration than conventional reactors. This is because some of the fructose molecules are prevented as acting as acceptors in the chromatographic reactor due to their removal from the reaction zone. In the conventional reactor this is not possible and therefore a greater proportion of low molecular weight dextran is produced which does not have much clinical use. A theoretical model was developed to describe the behaviour of the reactor separator and this model was simulated using a computer. The simulation predictions showed good agreement with experimental results at high eluent flowrates and low conversions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Covalent attachment of the anticancer drugs temozolomide (Temodal) and mitozolomide to triplex-forming oligonucleotides (TFOs) is a potential way of targeting these alkylating agents to specific gene sequences to maximise site-selectivity. In this work, polypyrimidine TFO conjugates of both drugs were synthesised and targeted to duplex DNA in an attempt to effect site-specific alkylation of guanine residues. Concurrently, in an attempt to enhance the triple helix stability of TFOs at neutral pH, the thermal stabilities of triplexes formed from TFOs containing isoguanine, 2-O-benzyl- and 2-O-allyl-adenine were evaluated. A novel cleavage and deprotection procedure was developed which allowed for the solid phase synthesis of the base-sensitive TFO-drug conjugates using a recently developed silyl-linked controlled pore glass (SLCPG) support. Covalent attachment of either temozolomide or mitozolomide at the 5'-end of TFO conjugates caused no destabilisation of the triplexes studied. The synthesis of a phosphoramidite derivative of mitozolomide enabled direct incorporation of this reagent into a model sequence during DNA synthesis. After cleavage and deprotection of the TFO-drug conjugate, the 5'-end mitozolomide residue was found to have decomposed presumably as a result of ring-opening of the tetrazinone ring. The base-sensitive antibacterial and antitumour agent, metronidazole, was also successfully incorporated at the 5'-end of the oligonucleotide d(T8) using conventional methods. Two C2-substituted derivatives of 2'-deoxyadenosine containing 2-O-benzyl and 2-O-allyl groups were synthesised. Hydrogenolysis of the 2-O-benzyl analogue provided a useful route, amenable to scale-up, for the synthesis of the rare nucleoside 2'-deoxyisoguanosine (isoG). Both the 2-O-allyl and 2-O-benzyl derivatives were incorporated into TFO sequences using phosphoramidite methodology. Thermal melting experiments showed that the 2-O-allyl and 2-O-benzyl groups caused marked destabilisation of the triple helices studied, in contrast to hexose-DNA duplexes, where aralkyl substituents caused significant stabilisation of duplexes. TFOs containing isoG were synthesised by Pd(O)-catalysed deallylation of 2-0-allyl adenine residues. These sequences containing isoG, in its N3- or 02-H tautomeric form, formed triple helices which were equally as stable as those containing adenine.