3 resultados para salicylic acid
em Aston University Research Archive
Resumo:
The effects of ionisation on transdermal drug delivery using excised human epidermis (HS) and silastic rubber (SR) as model permeation barriers were investigated in vitro using Franz-type absorption cells. Suspensions and solutions of salicylic acid (SA), the model ionogenic permeant, were used as donors and the variables studied were vehicle pH and trans-membrane pH-gradients. For solutions, the pH effect was related to the level of ionisation of the drug and the degree of saturation of the solution. With suspensions, the observed permeation rate was unaffected by pH. The penetration profiles through HS and SR were similar, although the overall flux through HS was about 70% of that observed through SR. Pretreatment of the membranes with various enhancer regimens, including oleic acid, Azone and N, N-dimethylamides in propylene glycol (PG) and isopropyl myristate (IPM) promoted the penetration of SA. SR was not a suitable model for enhancer pretreatment using IPM as a vehicle as the membrane was significantly disrupted by this vehicle. The results from comparable experiments with and without a trans-membrane pH-gradient did not have a significant effect upon flux or flux enhancement after pretreatment with the above enhancers. A theoretical model for the extraction coefficients of weak acids was derived using the partition coefficients of the ionised and unionised species, pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. The distribution of this solute between aqueous and oily phases, with and without added enhancer, was measured as a function of pH. The extraction coefficients determined were consistent with the model and showed that the behaviour of the system can be explained without referral to ion-pair mechanisms. Phosphonoacetate is an effective antiviral agent. However, as it is charged at physiological pH, its permeation across cell membranes is limited. To assess the improvement of the transport properties of this molecule, mono-, di- and tri-ester prodrugs were examined. These were assessed for stability and subsequent breakdown with respect to pH by HPLC. In vitro percutaneous absorption was observed using the triester, but not the ionic mono- or di-esters. The triester absorption could be potentiated using a range of enhancers with oleic acid being the most effective. Cyclodextrins (CD) have a role as absorption enhancers for peptide compounds across nasal epithelium. One potential mode of action is that CDs include these compounds, protect them from enzymic attack and thereby increase their residence time in the nasal epithelium. This study investigated the potential of CDs to protect ester prodrugs from enzymatic breakdown and prevent production of poorly transportable ionic species. Using a range of CD to ester molar ratios (10:1 to 2500:1) a small, but measurable, protection for the model esters (parabens) against esterase attack was observed. Possible mechanisms for this phenomenon are that CDs include the ester, making it unavailable for hydrolysis, the CDs may also affect the esterase in some way preventing access for the ester into the active site.
Resumo:
Despite improvements in interventional and pharmacological therapy of atherosclerotic disease, it is still the leading cause of death in the developed world. Hence, there is a need for further development of effective therapeutic approaches. This requires better understanding of the molecular mechanisms and pathophysiology of the disease. Atherosclerosis has long been identified as having an inflammatory component contributing to its pathogenesis, whereas the available therapy primarily targets hyperlipidemia and prevention of thrombosis. Notwithstanding a pleotropic anti-inflammatory effect to some therapies, such as acetyl salicylic acid and the statins, none of the currently approved medicines for management of either stable or complicated atherosclerosis has inflammation as a primary target. Monocytes, as representatives of the innate immune system, play a major role in the initiation, propagation, and progression of atherosclerosis from a stable to an unstable state. Experimental data support a role of monocytes in acute coronary syndromes and in outcome post-infarction; however, limited research has been done in humans. Analysis of expression of various cell surface receptors allows characterization of the different monocyte subsets phenotypically, whereas downstream assessment of inflammatory pathways provides an insight into their activity. In this review we discuss the functional role of monocytes and their different subpopulations in atherosclerosis, acute coronary syndromes, cardiac healing, and recovery with an aim of critical evaluation of potential future therapeutic targets in atherosclerosis and its complications. We will also discuss technical difficulties of delineating different monocyte subpopulations, understanding their differentiation potential and function.
Resumo:
Derivatives of salicylic acid have been synthesized as potential lipoxygenase inhibitors. Agents containing a phenolic dihydroxy moiety showed potent (IC 5010 -6-10 -7 M) inhibition of the growth of murine colonic tumour cells in vitro, and were effective inhibitors of 5-, 12- and 15-lipoxygenase in intact cells. The catechols were also potent inhibitors of rabbit reticulocyte 15-lipoxygenase (IC 50 ∼1 μM). © 2003 Elsevier Ltd. All rights reserved.