7 resultados para rules application algorithms

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Recently, much research has been proposed using nature inspired algorithms to perform complex machine learning tasks. Ant colony optimization (ACO) is one such algorithm based on swarm intelligence and is derived from a model inspired by the collective foraging behavior of ants. Taking advantage of the ACO in traits such as self-organization and robustness, this paper investigates ant-based algorithms for gene expression data clustering and associative classification. Methods and material: An ant-based clustering (Ant-C) and an ant-based association rule mining (Ant-ARM) algorithms are proposed for gene expression data analysis. The proposed algorithms make use of the natural behavior of ants such as cooperation and adaptation to allow for a flexible robust search for a good candidate solution. Results: Ant-C has been tested on the three datasets selected from the Stanford Genomic Resource Database and achieved relatively high accuracy compared to other classical clustering methods. Ant-ARM has been tested on the acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML) dataset and generated about 30 classification rules with high accuracy. Conclusions: Ant-C can generate optimal number of clusters without incorporating any other algorithms such as K-means or agglomerative hierarchical clustering. For associative classification, while a few of the well-known algorithms such as Apriori, FP-growth and Magnum Opus are unable to mine any association rules from the ALL/AML dataset within a reasonable period of time, Ant-ARM is able to extract associative classification rules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We explore the dependence of performance measures, such as the generalization error and generalization consistency, on the structure and the parameterization of the prior on `rules', instanced here by the noisy linear perceptron. Using a statistical mechanics framework, we show how one may assign values to the parameters of a model for a `rule' on the basis of data instancing the rule. Information about the data, such as input distribution, noise distribution and other `rule' characteristics may be embedded in the form of general gaussian priors for improving net performance. We examine explicitly two types of general gaussian priors which are useful in some simple cases. We calculate the optimal values for the parameters of these priors and show their effect in modifying the most probable, MAP, values for the rules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five axis machine tools are increasing and becoming more popular as customers demand more complex machined parts. In high value manufacturing, the importance of machine tools in producing high accuracy products is essential. High accuracy manufacturing requires producing parts in a repeatable manner and precision in compliance to the defined design specifications. The performance of the machine tools is often affected by geometrical errors due to a variety of causes including incorrect tool offsets, errors in the centres of rotation and thermal growth. As a consequence, it can be difficult to produce highly accurate parts consistently. It is, therefore, essential to ensure that machine tools are verified in terms of their geometric and positioning accuracy. When machine tools are verified in terms of their accuracy, the resulting numerical values of positional accuracy and process capability can be used to define design for verification rules and algorithms so that machined parts can be easily produced without scrap and little or no after process measurement. In this paper the benefits of machine tool verification are listed and a case study is used to demonstrate the implementation of robust machine tool performance measurement and diagnostics using a ballbar system.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design and implementation of data bases involve, firstly, the formulation of a conceptual data model by systematic analysis of the structure and information requirements of the organisation for which the system is being designed; secondly, the logical mapping of this conceptual model onto the data structure of the target data base management system (DBMS); and thirdly, the physical mapping of this structured model into storage structures of the target DBMS. The accuracy of both the logical and physical mapping determine the performance of the resulting systems. This thesis describes research which develops software tools to facilitate the implementation of data bases. A conceptual model describing the information structure of a hospital is derived using the Entity-Relationship (E-R) approach and this model forms the basis for mapping onto the logical model. Rules are derived for automatically mapping the conceptual model onto relational and CODASYL types of data structures. Further algorithms are developed for partly automating the implementation of these models onto INGRES, MIMER and VAX-11 DBMS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study here highlights the potential that analytical methods based on Knowledge Discovery in Databases (KDD) methodologies have to aid both the resolution of unstructured marketing/business problems and the process of scholarly knowledge discovery. The authors present and discuss the application of KDD in these situations prior to the presentation of an analytical method based on fuzzy logic and evolutionary algorithms, developed to analyze marketing databases and uncover relationships among variables. A detailed implementation on a pre-existing data set illustrates the method. © 2012 Published by Elsevier Inc.