3 resultados para roslyn,compilatore,C

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae gene FPS1 encodes an aquaglyceroporin of the major intrinsic protein (MIP) family. The main function of Fps1p seems to be the efflux of glycerol in the adaptation of the yeast cell to lower external osmolarity. Fps1p is an atypical member of the family, because the protein is much larger (669 amino acids) than most MIPs due to long hydrophilic extensions in both termini. We have shown previously that a short domain in the N-terminal extension of the protein is required for restricting glycerol transport through the channel (Tamás, M. J., Karlgren, S., Bill, R. M., Hedfalk, K., Allegri, L., Ferreira, M., Thevelein, J. M., Rydström, J., Mullins, J. G. L., and Hohmann, S. (2003) J. Biol. Chem. 278, 6337-6345). Deletion of the N-terminal domain results in an unregulated channel, loss of glycerol, and osmosensitivity. In this work we have investigated the role of the Fps1p C terminus (139 amino acids). A set of eight truncations has been constructed and tested in vivo in a yeast fps1Δ strain. We have performed growth tests, membrane localization following cell fractionation, and glycerol accumulation measurements as well as an investigation of the osmotic stress response. Our results show that the C-terminal extension is also involved in restricting transport through Fps1p. We have identified a sequence of 12 amino acids, residues 535-546, close to the sixth transmembrane domain. This element seems to be important for controlling Fps1p function. Similar to the N-terminal domain, the C-terminal domain is amphiphilic and has a potential to dip into the membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well-known that the rapid flow of water into and out of cells is controlled by membrane proteins called aquaporins (AQPs). However, the mechanisms that allow cells to quickly respond to a changing osmotic environment are less well established. Using GFP-AQP fusion proteins expressed in HEK293 cells, we demonstrate the reversible manipulation of cellular trafficking of AQP1. AQP1 trafficking was mediated by the tonicity of the cell environment in a specific PKC- and microtubule-dependent manner. This suggests that the increased level of water transport following osmotic change may be due a phosphorylation-dependent increase in the level of AQP1 trafficking resulting in membrane localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetraspanins are thought to exert their biological function(s) by co-ordinating the lateral movement and trafficking of associated molecules into tetraspanin-enriched microdomains. A second four-TM (transmembrane) domain protein family, the Claudin superfamily, is the major structural component of cellular TJs (tight junctions). Although the Claudin family displays low sequence homology and appears to be evolutionarily distinct from the tetraspanins, CD81 and Claudin-1 are critical molecules defining HCV (hepatitis C virus) entry; we recently demonstrated that CD81-Claudin-1 complexes have an essential role in this process. To understand the molecular basis of CD81-Claudin-1 complex formation, we produced and purified milligram quantities of full-length CD81 and Claudin-1, alone and in complex, in both detergent and lipid contexts. Structural characterization of these purified proteins will allow us to define the mechanism(s) underlying virus-cell interactions and aid the design of therapeutic agents targeting early steps in the viral life cycle.