13 resultados para road safety

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated short range communications (DSRC) has been regarded as one of the most promising technologies to provide robust communications for large scale vehicle networks. It is designed to support both road safety and commercial applications. Road safety applications will require reliable and timely wireless communications. However, as the medium access control (MAC) layer of DSRC is based on the IEEE 802.11 distributed coordination function (DCF), it is well known that the random channel access based MAC cannot provide guaranteed quality of services (QoS). It is very important to understand the quantitative performance of DSRC, in order to make better decisions on its adoption, control, adaptation, and improvement. In this paper, we propose an analytic model to evaluate the DSRC-based inter-vehicle communication. We investigate the impacts of the channel access parameters associated with the different services including arbitration inter-frame space (AIFS) and contention window (CW). Based on the proposed model, we analyze the successful message delivery ratio and channel service delay for broadcast messages. The proposed analytical model can provide a convenient tool to evaluate the inter-vehicle safety applications and analyze the suitability of DSRC for road safety applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congestion control is critical for the provisioning of quality of services (QoS) over dedicated short range communications (DSRC) vehicle networks for road safety applications. In this paper we propose a congestion control method for DSRC vehicle networks at road intersection, with the aims of providing high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method a offline simulation based approach is used to find out the best possible configurations of message rate and MAC layer backoff exponent (BE) for a given number of vehicles equipped with DSRC radios. The identified best configurations are then used online by an roadside access point (AP) for system operation. Simulation results demonstrated that this adaptive method significantly outperforms the fixed control method under varying number of vehicles. The impact of estimation error on the number of vehicles in the network on system level performance is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intelligent transport system (ITS) has large potentials on road safety applications as well as nonsafety applications. One of the big challenges for ITS is on the reliable and cost-effective vehicle communications due to the large quantity of vehicles, high mobility, and bursty traffic from the safety and non-safety applications. In this paper, we investigate the use of dedicated short-range communications (DSRC) for coexisting safety and non-safety applications over infrastructured vehicle networks. The main objective of this work is to improve the scalability of communications for vehicles networks, ensure QoS for safety applications, and leave as much as possible bandwidth for non-safety applications. A two-level adaptive control scheme is proposed to find appropriate message rate and control channel interval for safety applications. Simulation results demonstrated that this adaptive method outperforms the fixed control method under varying number of vehicles. © 2012 Wenyang Guan et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality of services (QoS) support is critical for dedicated short range communications (DSRC) vehicle networks based collaborative road safety applications. In this paper we propose an adaptive power and message rate control method for DSRC vehicle networks at road intersections. The design objective is to provide high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method an offline simulation based approach is used to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network. The identified best configurations are then used online by roadside access points (AP) according to estimated number of vehicles. Simulation results show that this adaptive method significantly outperforms a fixed control method. © 2011 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated short-range communications (DSRC) are a promising vehicle communication technique for collaborative road safety applications (CSA). However, road safety applications require highly reliable and timely wireless communications, which present big challenges to DSRC based vehicle networks on effective and robust quality of services (QoS) provisioning due to the random channel access method applied in the DSRC technique. In this paper we examine the QoS control problem for CSA in the DSRC based vehicle networks and presented an overview of the research work towards the QoS control problem. After an analysis of the system application requirements and the DSRC vehicle network features, we propose a framework for cooperative and adaptive QoS control, which is believed to be a key for the success of DSRC on supporting effective collaborative road safety applications. A core design in the proposed QoS control framework is that network feedback and cross-layer design are employed to collaboratively achieve targeted QoS. A design example of cooperative and adaptive rate control scheme is implemented and evaluated, with objective of illustrating the key ideas in the framework. Simulation results demonstrate the effectiveness of proposed rate control schemes in providing highly available and reliable channel for emergency safety messages. © 2013 Wenyang Guan et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the development and the application of a safety performance indicator which measures the intrinsic safety of a country's vehicle fleet related to fleet composition. The indicator takes into account both the ‘relative severity’ of individual collisions between different vehicle types, and the share of those vehicle types within a country's fleet. The relative severity is a measure for the personal damage that can be expected from a collision between two vehicles of any type, relative to that of a collision between passenger cars. It is shown how this number can be calculated using vehicle mass only. A sensitivity analysis is performed to study the dependence of the indicator on parameter values and basic assumptions made. The indicator is easy to apply and satisfies the requirements for appropriate safety performance indicators. It was developed in such a way that it specifically scores the intrinsic safety of a fleet due to its composition, without being influenced by other factors, like helmet wearing. For the sake of simplicity, and since the required data is available throughout Europe, the indicator was applied to the relative share of three of the main vehicle types: passenger cars, heavy goods vehicles and motorcycles. Using the vehicle fleet data from 13 EU Member States and Norway, the indicator was used to rank the countries’ safety performance. The UK was found to perform best in terms of its fleet composition (value is 1.07), while Greece has the worst performance with the highest indicator value (1.41).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an adaptive power and message rate control method for safety applications at road intersections. The design objectives are to firstly provide guaranteed QoS support to both high priority emergency safety applications and low priority routine safety applications and secondly maximize channel utilization. We use an offline simulation based approach to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network with certain safety QoS requirements. The identified configurations are then used online by roadside access points (AP) adaptively according to estimated number of vehicles. Simulation results show that this adaptive method could provide required QoS support to safety applications and it significantly outperforms a fixed control method. © 2013 International Information Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major drawbacks for mobile nodes in wireless networks is power management. Our goal is to evaluate the performance power control scheme to be used to reduce network congestion, improve quality of service and collision avoidance in vehicular network and road safety application. Some of the importance of power control (PC) are improving spatial reuse, and increasing network capacity in mobile wireless communications. In this simulation we have evaluated the performance of existing rate algorithms compared with context Aware Rate selection algorithm (ACARS) and also seen the performance of ACARS and how it can be applied to road safety, improve network control and power management. Result shows that ACARS is able to minimize the total transmit power in the presence of propagation processes and mobility of vehicles, by adapting to the fast varying channels conditions with the Path loss exponent values that was used for that environment which is shown in the network simulation parameter. Our results have shown that ACARS is a very robust algorithm which performs very well with the effect of propagation processes that is prone to every transmitted signal in mobile networks. © 2013 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theory of planned behaviour (TPB) has been used successfully in the past to account for pedestrians' intentions to cross the road in risky situations. However, accident statistics show age and gender differences in the likelihood of adult pedestrian accidents. This study extends earlier work by examining the relative importance of the model components as predictors of intention to cross for four different adult age groups, men, women, drivers and nondrivers. The groups did not differ in the extent to which they differentiated between two situations of varying perceived risk. The model fit was good, but accounted for less of the variance in intention for the youngest group (17-24) than for other age groups. Differences between the age groups in intention to cross seemed to be due to differences in perceived value of crossing rather than differences in perceived risk. Women were less likely to intend to cross than men and perceived more risk, and there were important age, gender and driver status differences in the importance of the TPB variables as predictors of intention. A key implication of these findings is that road safety interventions need to be designed differently for different groups. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives are to examine rural road accident data in order to develop a method by which high accident rate locations and accident causes can be identified, and also to develop proposals for improvements at such locations and to identify measures which will improve road safety throughout the country. The problem of road safety in Iran is an important issue, because of the tragic and unnecessary loss of life, and the enormous cost of accidents in the country. The resources available to deal with the problems are limited and must be allocated on priority basis. This study represents an initial effort to identify the extent of the problem in order to take remedial measures. A study was made of all the available road accident data collected by agencies related to road safety in Iran, and the major organisations responsible for road safety development were visited. The Vice Minister of Roads and Transportation selected for this study a 280 Km rural road in South West Iran. Mainly because of the lack of suitable maps and plans of the roads, it was not possible to accurately identify the location of accidents. Accident scene data was subsequently collected by the highway police and personally by the author. The data for the study road was then analysed to identify 'high accident rate' locations, and also to determine, as far as was possible, the reasons for the accidents. The study suggests specific improvements for each of the high accident rate locations examined (eg. the building of dual carriageways with central guard rails to reduce the risk of collision with oncoming vehicles, pedestrian facilities to allow pedestrians to cross dangerous roadsl]. In addition recommendations are made to guide and assist the major organisations responsible for road safety in Iran. These recommendations are: (al for improving accident data collection and storage (bl for subsequent analysis for taking remedial measures with a view to accident prevention

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the general introduction of the road-accident phenomenon inside and outside Iran, the results of previous research-works and international conferences and seminars on road-safety have been reviewed. Also a sample-road between Tehran and Mashad has been investigated as a case-study. Examining the road-accident data and iriformation,first: the information presented in road-accident report-forms in developed countries is discussed and, second: the procedures for road-accident data collection in Iran are investigated in detail. The data supplied by Iran Road-Police Central Statistics Office, is analysed, different rates are computed, due comparisons with other nations are made, and the results are discussed. Also such analysis and comparisons are presented for different provinces of Iran. It is concluded that each province with its own natural, geographical, social and economical characteristics possesses its own reasons for the quality and quantity of road-accidents and therefore must receive its own appropriate remedial solutions. The question~ of "what is the cost of road-accidents", "why and how evaluate the cost", "what is the appropriate way of approach to such evaluation" are all discussed and then "the cost of road-accidents in Iran" based on two different approaches: "Gross National Output"and "court award" is computed. It is concluded that this cost is about 1.5 per cent of the country's national product. In Appendix 3 an impressive example is given of the trend of costs and benefits that can be attributed to investment in road-safety measures.