15 resultados para reversed phase liquid chromatography

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performances of five different ESI sources coupled to a polystyrene-divinylbenzene monolithic column were compared in a series of LC-ESI-MS/MS analyses of Escherichia coli outer membrane proteins. The sources selected for comparison included two different modifications of the standard electrospray source, a commercial low-flow sprayer, a stainless steel nanospray needle and a coated glass Picotip. Respective performances were judged on sensitivity and the number and reproducibility of significant protein identifications obtained through the analysis of multiple identical samples. Data quality varied between that of a ground silica capillary, with 160 total protein identifications, the lowest number of high quality peptide hits obtained (3012), and generally peaks of lower intensity; and a stainless steel nanospray needle, which resulted in increased precursor ion abundance, the highest-quality peptide fragmentation spectra (5414) and greatest number of total protein identifications (259) exhibiting the highest MASCOT scores (average increase in score of 27.5% per identified protein). The data presented show that, despite increased variability in comparative ion intensity, the stainless steel nanospray needle provides the highest overall sensitivity. However, the resulting data were less reproducible in terms of proteins identified in complex mixtures -- arguably due to an increased number of high intensity precursor ion candidates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principles of High Performance Liquid Chromatography (HPLC) and pharmacokinetics were applied to the use of several clinically-important drugs at the East Birmingham Hospital. Amongst these was gentamicin, which was investigated over a two-year period by a multi-disciplinary team. It was found that there was considerable intra- and inter-patient variation that had not previously been reported and the causes and consequences of such variation were considered. A detailed evaluation of available pharmacokinetic techniques was undertaken and 1- and 2-compartment models were optimised with regard to sampling procedures, analytical error and model-error. The implications for control of therapy are discussed and an improved sampling regime is proposed for routine usage. Similar techniques were applied to trimethoprim, assayed by HPLC, in patients with normal renal function and investigations were also commenced into the penetration of drug into peritoneal dialysate. Novel assay techniques were also developed for a range of drugs including 4-aminopyridine, chloramphenicol, metronidazole and a series of penicillins and cephalosporins. Stability studies on cysteamine, reaction-rate studies on creatinine-picrate and structure-activity relationships in HPLC of aminopyridines are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurement of lipid peroxidation is a commonly used method of detecting oxidative damage to biological tissues, but the most frequently used methods, including MS, measure breakdown products and are therefore indirect. We have coupled reversed-phase HPLC with positive-ionization electrospray MS (LC-MS) to provide a method for separating and detecting intact oxidized phospholipids in oxidatively stressed mammalian cells without extensive sample preparation. The elution profile of phospholipid hydroperoxides and chlorohydrins was first characterized using individual phospholipids or a defined phospholipid mixture as a model system. The facility of detection of the oxidized species in complex mixtures was greatly improved compared with direct-injection MS analysis, as they eluted earlier than the native lipids, owing to the decrease in hydrophobicity. In U937 and HL60 cells treated in vitro with t-butylhydroperoxide plus Fe2+, lipid oxidation could not be observed by direct injection, but LC-MS allowed the detection of monohydroperoxides of palmitoyl-linoleoyl and stearoyl-linoleoyl phosphatidylcholines. The levels of hydroperoxides observed in U937 cells were found to depend on the duration and severity of the oxidative stress. In cells treated with HOCl, chlorohydrins of palmitoyloleoyl phosphatidylcholine were observed by LC-MS. The method was able to detect very small amounts of oxidized lipids compared with the levels of native lipids present. The membrane-lipid profiles of these cells were found to be quite resistant to damage until high concentrations of oxidants were used. This is the first report of direct detection by LC-MS of intact oxidized phospholipids induced in cultured cells subjected to oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft ionization methods for the introduction of labile biomolecules into a mass spectrometer are of fundamental importance to biomolecular analysis. Previously, electrospray ionization (ESI) and matrix assisted laser desorption-ionization (MALDI) have been the main ionization methods used. Surface acoustic wave nebulization (SAWN) is a new technique that has been demonstrated to deposit less energy into ions upon ion formation and transfer for detection than other methods for sample introduction into a mass spectrometer (MS). Here we report the optimization and use of SAWN as a nebulization technique for the introduction of samples from a low flow of liquid, and the interfacing of SAWN with liquid chromatographic separation (LC) for the analysis of a protein digest. This demonstrates that SAWN can be a viable, low-energy alternative to ESI for the LC-MS analysis of proteomic samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Azidoprofen {2-(4-azidophenyl)propionic acid; AZP}, an azido-substituted arylalkanoic acid, was investigated as a model soft drug candidate for a potential topical non-steroidal anti-inflammatory agent (NSAIA). Reversed-phase high performance liquid chromatography (HPLC) methods were developed for the assay of AZP, a series of ester analogues and their· degradation products. 1H-NMR spectroscopy was also employed as an analytical method in selected cases. Reduction of the azido-group to the corresponding amine has been proposed as a potential detoxification mechanism for compounds bearing this substituent. An in vitro assay to measure the susceptibility of azides towards reduction was developed using dithiothreitol as a model reducing agent. The rate of reduction of AZP was found to be base-dependent, hence supporting the postulated mechanism of thiol-mediated reduction via nucleophilic attack by the thiolate anion. Prodrugs may enhance topical bioavailability through the manipulation of physico-chemical properties of the parent drug. A series of ester derivatives of AZP were investigated for their susceptibility to chemical and enzymatic hydrolysis, which regenerates the parent acid. Use of alcoholic cosolvents with differing alkyl functions to that of the ester resulted in transesterification reactions, which were found to be enzyme-mediated. The skin penetration of AZP was assessed using an in vitro hairless mouse skin model, and silastic membrane in some cases. The rate of permeation of AZP was found to be a similar magnitude to that of the well established NSAIA ibuprofen. Penetration rates were dependent on the vehicle pH and drug concentration when solutions were employed. In contrast, flux was independent of pH when suspension formulations were used. Pretreatment of the skin with various enhancer regimes, including oleic acid and azone in propylene glycol, promoted the penetration of AZP. An intense IR absorption due to the azide group serves as a highly diagnostic marker, enabling azido compounds to be detected in the outer layers of the· stratum corneum following their application to skin, using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). This novel application enabled a non-invasive examination of the percutaneous penetration enhancement of a model azido compound in vivo in man, in the presence of the enhancer oleic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

m-Azidopyrimethamine ethanesulphonate salt (MZPES) is a new potent dihydrofolate reductase inhibitor designed to be both lipophilic and rapidly biodegradable. The drug is active against some methotrexate-refractory cell lines and against a broad spectrum of malignant cells in murine models. The pharmacokinetics of the drug were evaluated in the mouse, rat and man. A specific analytical method was developed to allow determination of MZP (the free base of MZPES) and its putative metabolite m-amino-pyrimethamine (MAP) in plasma, urine, faeces and tissues. Analytical methodology involved solvent extraction followed by reversed-phase ion-pair high pressure liquid chromatography. Mice were dosed at 10 and 20 mg/kg IP and 10 mg/kg PO. Absorption was rapid from both sites with a mean plasma elimination half-life of 4 hours. Oral bio-availability, relative to intraperitoneal injection, exceeded 95% in the mouse. MZP attained concentrations in mouse tissues 4 to 14 fold greater than those found in plasma and penetrated the blood-brain barrier effectively. Following intraperitoneal administration of MZP to the rat, the recovery of MZP and MAP in urine and faeces was 14% during 72 hours. MZPES was formulated for a phase I clinical evaluation as a 1% w/v aqueous solution and was administered by IV infusion in 5% dextrose over 1 hour. The drug obeyed 2-compartment kinetics with a central compartment volume of 27 litres and a volume of distribution of 118 litres. Plasma distribution and elimination half-lives were 0.27 and 34 hours respectively and plasma clearance was 7.5 L/hr. MZP was removed from plasma more rapidly than the prototypic lipophilic dihydrofolate reductase inhibitor metoprine (half-life 216 hours). The pharmacokinetics of MZPES showed no dose-dependency over the dose-range studied (27 to 460 mg/m2). The dose-limiting toxicity was nausea and vomiting. The short half-life of the drug should allow easy assessment of the optimum dose and schedule of administration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temozolomide is an imidazotetrazinone with antineoplastic properties. It is structurally related to dacarbazine. Temozolomide was not metabolized in vitro by liver fractions. Chemical decomposition appears to play an important r^ole in its in vitro and in vivo disposition. In contrast, 3-methylbenzotriazinone, a structural analogue, was metabolized by hepatic microsomes to afford benzotriazinone and a hydrophilic metabolite. The cytotoxicity of temozolomide, dacarbazine, 5-[3-(hydroxy-methyl-3-methyl-triazen-1-yl]imidazole-5-carboxamide (HMMTIC) and 3-monomethyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) were investigated in TLX5 murine lymphoma cells. Unlike dacarbazine, which was not toxic, MTIC, HMMTIC and temozolomide were cytotoxic in the absence of microsomes. Decarbazine was only cytotoxic in the presence of microsomes. The formation of MTIC from dacarbazine, HMMTIC and temozolomide was determined by reversed phase high performance liquid chromatography in mixtures incubated under conditions identical to those described before. MTIC was generated chemically from temozolomide and HMMTIC metabolically from dacarbazine. Using [14C]temozolomide, it was found that, in mice, the major route of excretion of the drug is via the kidneys. An acidic metabolite (metabolite I) was found in the urine of mice which had received temozolomide but its identity has not been established. 1H NMR, UV and chemical analyses revealed that Metabolite I possesses an intact NNN linkage and the site of metabolism is at the N3 methyl group. A further acidic metabolite (metabolite II) was found in the urine of patients. Metabolite II was unambiguously identified as the 8-carboxylic acid derivative of temozolomide. In vitro cytotoxicity assay showed that ony metabolite II is cytotoxic but not metabolite I. Pharmacokinetic studies of temozolomide and MTIC in vivo were performed on mice bearing TLX5 tumour. Temozolomide was eliminated from the plasma monophasically with a t1/2 of 0.7hr. MTIC was identified as a product of decomposition. MTIC was eliminated rapidly with a t1/2 of 2min. Though temozolomide shares many biochemical and biological similarities with clinically used dacarbazine, the results obtained in this study show that it differs markedly in its pharmacokinetic properties from dacarbazine, as temozolomide produced relatively sustained plasma levels which were reflected by drug concentrations in the tumour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels.