9 resultados para reverse transcriptase-polymerase chain reaction, novel genes

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle protein degradation is thought to play a major role in muscle atrophy in cancer cachexia. To investigate the importance of the ubiquitin-proteasome pathway, which has been suggested to be the main degradative pathway mediating progressive protein loss in cachexia, the expression of mRNA for proteasome subunits C2 and C5 as well as the ubiquitin-conjugating enzyme, E2(14k), has been determined in gastrocnemius and pectoral muscles of mice bearing the MAC16 adenocarcinoma, using competitive quantitative reverse transcriptase polymerase chain reaction. Protein levels of proteasome subunits and E2(14k) were determined by immunoblotting, to ensure changes in mRNA were reflected in changes in protein expression. Muscle weights correlated linearly with weight loss during the course of the study. There was a good correlation between expression of C2 and E2(14k) mRNA and protein levels in gastrocnemius muscle with increases of 6-8-fold for C2 and two-fold for E2(14k) between 12 and 20% weight loss, followed by a decrease in expression at weight losses of 25-27%, although loss of muscle protein continued. In contrast, expression of C5 mRNA only increased two-fold and was elevated similarly at all weight losses between 7.5 and 27%. Both proteasome functional activity, and proteasome-specific tyrosine release as a measure of total protein degradation was also maximal at 18-20% weight loss and decreased at higher weight loss. Proteasome expression in pectoral muscle followed a different pattern with increases in C2 and C5 and E2(14k) mRNA only being seen at weight losses above 17%, although muscle loss increased progressively with increasing weight loss. These results suggest that activation of the ubiquitin-proteasome pathway plays a major role in protein loss in gastrocnemius muscle, up to 20% weight loss, but that other factors such as depression in protein synthesis may play a more important role at higher weight loss. © 2005 Cancer Research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is common in patients with cancer and results in increased morbidity and mortality. In order to design effective therapy the mechanism by which this occurs needs to be elucidated. Most studies suggest that the ubiquitin-proteasome proteolytic pathway is most important in intracellular proteolysis, although there have been no reports on the activity of this pathway in patients with different extents of weight loss. In this report the expression of the ubiquitin-proteasome pathway in rectus abdominis muscle has been determined in cancer patients with weight loss of 0-34% using a competitive reverse transcriptase polymerase chain reaction to measure expression of mRNA for proteasome subunits C2 and C5, while protein expression has been determined by western blotting. Overall, both C2 and C5 gene expression was increased by about three-fold in skeletal muscle of cachectic cancer patients (average weight loss 14.5 ± 2.5%), compared with that in patients without weight loss, with or without cancer. The level of gene expression was dependent on the amount of weight loss, increasing maximally for both proteasome subunits in patients with weight loss of 12-19%. Further increases in weight loss reduced expression of mRNA for both proteasome subunits, although it was still elevated in comparison with patients with no weight loss. There was no evidence for an increase in expression at weight losses less than 10%. There was a good correlation between expression of proteasome 20Sα subunits, detected by western blotting, and C2 and C5 mRNA, showing that increased gene expression resulted in increased protein synthesis. Expression of the ubiquitin conjugating enzyme, E214k, with weight loss followed a similar pattern to that of proteasome subunits. These results suggest variations in the expression of key components of the ubiquitin-proteasome pathway with weight loss of cancer patients, and suggest that another mechanism of protein degradation must be operative for patients with weight loss less than 10%. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000 Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System, where categorization of identified genes was performed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ßElucidating some molecular mechanisms and biochemistry of brain tumours is an important step towards the development of adjuvant medical therapies. The present study concentrates on cholecystokinin (CCK), a gut-brain peptide that has been described to be able to induce mitosis of rat gliomas as well as hormone secretion by the anterior pituitary, via the CCK-B receptor. The significance of a polymorphism in the growth hormone releasing hormone (GHRH) receptor (GHRH-R) gene was also determined. Finally, defects in the ß-catenin gene, an important component of the developmental pathway, in a sub-set of craniopharyngiomas were investigated. Reverse transcription-polymerase chain reaction (RT-PCR), restriction digestion analysis and direct sequencing demonstrated expression of CCK peptide itself and its A and B receptors by human gliomas, meningiomas and pituitary tumours. CCK peptides stimulated growth of cultured gliomas and meningiomas as well as in vitro hormone secretion [growth hormone (GH), luteinizing hormone (LH) and follicle stimulating hormone (FSH)] by human pituitary tumours. These biological effects were reduced or abolished by CCK antagonists. In addition, an antibody to CCK reduced mitosis by gliomas and meningiomas, and the same antibody inhibited hormone secretion by cultured human pituitary tumours. CCK peptides stimulated phosphatidylinositol (PI) hydrolysis, indicating coupling of the CCK receptors to phopsholipase C. Cyclic AMP was unaffected. In addition, caspase-3 activity was significantly and markedly increased, whilst proteasome activity was decreased. Taken together, these results may indicate an autocrine/paracrine role of CCK in the control of growth and/or functioning of gliomas, meningiomas and pituitary tumours. Primer induced restriction analysis (PIRA) of a rarer and alternative polymorphism in the GHRH-R receptor, in which Thr replaces Ala at codon 57, in human GH-secreting pituitary tumours was investigated. Whilst the rarer form correlated with an increased response of the pituitary cells to GHRH in vitro, allele distribution studies revealed that it is unlikely that the polymorphism contributes to increased risk of developing GH-secreting tumours and therefore acromegaly. Further findings of this study, using PCR and direct sequencing, were the demonstration of an association between b-catenin gene alterations and craniopharyngiomas of the adamantinomatous type. Since this gene product is involved with development, these results suggest that p-catenin mutations may contribute to the initiation and subsequent growth of congenital adamantinomatous craniopharyngiomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Embryonic stem (ES) cells have the potential to produce unlimited numbers of surrogate insulin-producing cells for cell replacement therapy of type I diabetes mellitus. The impact of the in vivo environment on mouse ES cell differentiation towards insulin-producing cells was analysed morphologically after implantation. Methods ES cells differentiated in vitro into insulin-producing cells according to the Lumelsky protocol or a new four-stage differentiation protocol were analysed morphologically before and after implantation for gene expression by in situ reverse transcription polymerase chain reaction and protein expression by immunohistochemistry and ultrastructural analysis. Results In comparison with nestin positive ES cells developed according to the reference protocol, the number of ES cells differentiated with the four-stage protocol increased under in vivo conditions upon morphological analysis. The cells exhibited, in comparison to the in vitro situation, increased gene and protein expression of Pdx1, insulin, islet amyloid polypeptide (IAPP), the GLUT2 glucose transporter and glucokinase, which are functional markers for glucose-induced insulin secretion of pancreatic beta cells. Renal sub-capsular implantation of ES cells with a higher degree of differentiation achieved by in vitro differentiation with a four-stage protocol enabled further significant maturation for the beta-cell-specific markers, insulin and the co-stored IAPP as well as the glucose recognition structures. in contrast, further in vivo differentiation was not achieved with cells differentiated in vitro by the reference protocol. Conclusions A sufficient degree of in vitro differentiation is an essential prerequisite for further substantial maturation in a beta-cell-specific way in vivo, supported by cell-cell contacts and vascularisation. Copyright (c) 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. Materials and Methods: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNF) induced placental damage and on feto-placental circulation was studied. Results: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNF-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemininduced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX. Conclusions: Our findings establish HO-1 as an endogenous system that offers protection against cytotoxic damage in the placenta, identifies the HO-CO pathway to regulate feto-placental circulation and provides a new approach to study the disease of preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomerase reverse transcriptase (TERT) is a key component of the telomerase complex. By lengthening telomeres in DNA strands, TERT increases senescent cell lifespan. Mice that lack TERT age much faster and exhibit age-related conditions such as osteoporosis, diabetes and neurodegeneration. Accelerated telomere shortening in both human and animal models has been documented in conditions associated with insulin resistance, including T2DM. We investigated the role of TERT, in regulating cellular glucose utilisation by using the myoblastoma cell line C2C12, as well as primary mouse and human skeletal muscle cells. Inhibition of TERT expression or activity by using siRNA (100. nM) or specific inhibitors (100. nM) reduced basal 2-deoxyglucose uptake by ~. 50%, in all cell types, without altering insulin responsiveness. In contrast, TERT over-expression increased glucose uptake by 3.25-fold. In C2C12 cells TERT protein was mostly localised intracellularly and stimulation of cells with insulin induced translocation to the plasma membrane. Furthermore, co-immunoprecipitation experiments in C2C12 cells showed that TERT was constitutively associated with glucose transporters (GLUTs) 1, 4 and 12 via an insulin insensitive interaction that also did not require intact PI3-K and mTOR pathways. Collectively, these findings identified a novel extra-nuclear function of TERT that regulates an insulin-insensitive pathway involved in glucose uptake in human and mouse skeletal muscle cells. © 2014 Elsevier B.V.