47 resultados para return volatility
em Aston University Research Archive
Resumo:
We provide evidence of the nature of the transmission of volatility within the UK stock market. We find a distinct asymmetry in that shocks to the return volatility of a portfolio of relatively large firms influence the future volatility of a portfolio of relatively small firms, but find that the reverse is not the case. The characteristics of the volatility process suggest that this result is not caused by thin trading.
Resumo:
This study seeks to explain the leverage in UK stock returns by reference to the return volatility, leverage and size characteristics of UK companies. A leverage effect is found that is stronger for smaller companies and has greater explanatory power over the returns of smaller companies. The properties of a theoretical model that predicts that companies with higher leverage ratios will experience greater leverage effects are explored. On examining leverage ratio data, it is found that there is a propensity for smaller companies to have higher leverage ratios. The transmission of volatility shocks between the companies is also examined and it is found that the volatility of larger firm returns is important in determining both the volatility and returns of smaller firms, but not the reverse. Moreover, it is found that where volatility spillovers are important, they improve out-of-sample volatility forecasts. © 2005 Taylor & Francis Group Ltd.
Resumo:
This thesis focuses on three main questions. The first uses ExchangeTraded Funds (ETFs) to evaluate estimated adverse selection costs obtained spread decomposition models. The second compares the Probability of Informed Trading (PIN) in Exchange-Traded Funds to control securities. The third examines the intra-day ETF trading patterns. These spread decomposition models evaluated are Glosten and Harris (1988); George, Kaul, and Nimalendran (1991); Lin, Sanger, and Booth (1995); Madhavan, Richardson, and Roomans (1997); Huang and Stoll (1997). Using the characteristics of ETFs it is shown that only the Glosten and Harris (1988) and Madhavan, et al (1997) models provide theoretically consistent results. When the PIN measure is employed ETFs are shown to have greater PINs than control securities. The investigation of the intra-day trading patterns shows that return volatility and trading volume have a U-shaped intra-day pattern. A study of trading systems shows that ETFs on the American Stock Exchange (AMEX) have a U-shaped intra-day pattern of bid-ask spreads, while ETFs on NASDAQ do not. Specifically, ETFs on NASDAQ have higher bid-ask spreads at the market opening, then the lowest bid-ask spread in the middle of the day. At the close of the market, the bid-ask spread of ETFs on NASDAQ slightly elevated when compared to mid-day.
Resumo:
In this paper the performance of opening and closing returns, for the components of the FT-30 will be studied. It will be shown that for these stocks opening returns have higher volatility and a greater tendency towards negative serial correlation than closing returns. Unlike previous studies this contrasting performance cannot solely be attributed to differences in the trading mechanism across the trading day. All the stocks used in our sample trade thought the day using a uniform trading mechanism. In this paper, we suggest that it is differences in the speed that closing and opening returns adjust to new information that causes differences in return performance. By estimating the Amihud and Mendelson (1987) [Amihud, Yakov, & Mendelson, Haim (1987). Trading mechanisms and stock returns: An empirical investigation, Journal of Finance, 62 533-553.] partial adjustment model with noise, we show that opening returns have a tendency towards over-reaction, while closing returns have a tendency towards under-reaction. We suggest that it is these differences that cause a substantial proportion (although not all) of the asymmetric return patterns associated with opening and closing returns. © 2005 Elsevier Inc. All rights reserved.
Resumo:
We investigate the integration of the European peripheral financial markets with Germany, France, and the UK using a combination of tests for structural breaks and return correlations derived from several multivariate stochastic volatility models. Our findings suggest that financial integration intensified in anticipation of the Euro, further strengthened by the EMU inception, and amplified in response to the 2007/2008 financial crisis. Hence, no evidence is found of decoupling of the equity markets in more troubled European countries from the core. Interestingly, the UK, despite staying outside the EMU, is not worse integrated with the GIPSI than Germany or France. © 2013 Elsevier B.V.
Resumo:
It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.
Resumo:
In January 2001 Greece joined the eurozone. The aim of this article is to examine whether an intention to join the eurozone had any impact on exchange rate volatility. We apply the Iterated Cumulative Sum of Squares (ICSS) algorithm of Inclan and Tiao (1994) to a set of Greek drachma exchange rate changes. We find evidence to suggest that the unconditional volatility of the drachma exchange rate against the dollar, British pound, yen, German mark and ECU/Euro was nonstationary, exhibiting a large number of volatility changes prior to European Monetary Union (EMU) membership. We then use a news archive service to identify the events that might have caused exchange rate volatility to shift. We find that devaluation of the drachma increased exchange rate volatility but ERM membership and a commitment to joining the eurozone led to lower volatility. Our findings therefore suggest that a strong commitment to join the eurozone may be sufficient to reduce some exchange rate volatility which has implications for countries intending to join the eurozone in the future.
Resumo:
In this article a partial-adjustment model, which shows how equity prices fail to adjust instantaneously to new information, is estimated using a Kalman filter. For the components of the Dow Jones Industrial 30 index I aim to identify whether overreaction or noise is the cause of serial correlation and high volatility associated with opening returns. I find that the tendency for overreaction in opening prices is much stronger than for closing prices; therefore, overreaction rather than noise may account for differences in the return behavior of opening and closing returns.
Resumo:
An expanding literature exists to suggest that the trading mechanism can influence the volatility of security returns. This study adds to this literature by examining the impact that the introduction of SETS, on the London Stock Exchange, had on the volatility of security returns. Using a Markov switching regime change model security volatility is categorized as being in a regime of either high or low volatility. It is shown that prior to the introduction of SETS securities tended to be in a low volatility regime. At the time SETS was introduced securities moved to a high volatility regime. This suggests that volatility increased when SETS was introduced.
Resumo:
Recently, Drǎgulescu and Yakovenko proposed an analytical formula for computing the probability density function of stock log returns, based on the Heston model, which they tested empirically. Their research design inadvertently favourably biased the fit of the data to the Heston model, thus overstating their empirical results. Furthermore, Drǎgulescu and Yakovenko did not perform any goodness-of-fit statistical tests. This study employs a research design that facilitates statistical tests of the goodness-of-fit of the Heston model to empirical returns. Robustness checks are also performed. In brief, the Heston model outperformed the Gaussian model only at high frequencies and even so does not provide a statistically acceptable fit to the data. The Gaussian model performed (marginally) better at medium and low frequencies, at which points the extra parameters of the Heston model have adverse impacts on the test statistics. © 2005 Taylor & Francis Group Ltd.
Resumo:
It is well known that innovation is the engine that drives the growth machine of modern capitalist economies. Therefore, not surprisingly, substantial attention has been devoted by economists to the process behind the production of innovations. Three areas have recently emerged as relevant in the field. These are: the impact of spillovers on productivity; the different forms of R&D cooperation and the role of patents in fostering innovations when these are cumulative. In this paper I summarise the relevant literature in these three areas by discussing where the current literature stands and what are its future developments.
Resumo:
A two-factor no-arbitrage model is used to provide a theoretical link between stock and bond market volatility. While this model suggests that short-term interest rate volatility may, at least in part, drive both stock and bond market volatility, the empirical evidence suggests that past bond market volatility affects both markets and feeds back into short-term yield volatility. The empirical modelling goes on to examine the (time-varying) correlation structure between volatility in the stock and bond markets and finds that the sign of this correlation has reversed over the last 20 years. This has important implications far portfolio selection in financial markets. © 2005 Elsevier B.V. All rights reserved.
Resumo:
We consider return-to-zero (RZ) pulses with random phase modulation propagating in a nonlinear channel (modelled by the integrable nonlinear Schrödinger equation, NLSE). We suggest two different models for the phase fluctuations of the optical field: (i) Gaussian short-correlated fluctuations and (ii) generalized telegraph process. Using the rectangular-shaped pulse form we demonstrate that the presence of phase fluctuations of both types strongly influences the number of solitons generated in the channel. It is also shown that increasing the correlation time for the random phase fluctuations affects the coherent content of a pulse in a non-trivial way. The result obtained has potential consequences for all-optical processing and design of optical decision elements.
Resumo:
This paper investigates whether equity market volatility in one major market is related to volatility elsewhere. This paper models the daily conditional volatility of equity market wide returns as a GARCH-(1,1) process. Such a model will capture the changing nature of the conditional variance through time. It is found that the correlation between the conditional variances of major equity markets has increased substantially over the last two decades. This supports work which has been undertaken on conditional mean returns which indicates there has been an increase in equity market integration.