80 resultados para resonant grating waveguide structures

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although fiber Bragg gratings (FBGs) have been widely used as advanced optical sensors, the cross-sensitivity between temperature and strain has complicated independent measurement procedures for these two measurands. We report here, for the first time to our knowledge, the results of a systematic investigation of the dependence of both temperature and strain sensitivities on the grating type, including the well-known Type I, Type IIA, and a new type which we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibers. We have identified distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, dual-parameter sensor device with performance superior to that of previously reported grating-based structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a systematic investigation of the dependence of both temperature and strain sensitivities on the fiber Bragg grating type, including the well-known Type I, Type IIA, and a new type that we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibres. We have identified distinct sensitivity characteristics for each grating type, and we have used them to implement a novel dual-grating, dual-parameter sensor device. Three dual-grating sensing schemes with different combinations of grating type have been constructed and compared, and that of a Type IA-Type IIA combination exhibits the best performance, which is also superior to that of previously reported grating-based structures. The characteristics of the measurement errors in such dual-grating sensor systems is also presented in detail. © 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors describe a detailed investigation on tilted fiber Bragg grating (TFBG) structures with tilted angles exceeding 45°. In contrast to the backward mode coupling mechanism of Bragg gratings with normal and small tilting structures, the ex-45° TFBGs facilitate the light coupling to the forward-propagating cladding modes. The authors have also theoretically and experimentally examined the mode coupling transition of TFBGs with small, medium, and large tilt angles. In particular, experiments are conducted to investigate the spectra and far-field distribution, as well as temperature, strain, and refractive-index sensitivities of ex-45° devices. It has been revealed that these ex-45° gratings exhibit ultralow thermal sensitivity. As in-fiber devices, they may be superior to conventional Bragg and long-period gratings when the low thermal cross sensitivity is required. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033nm in the germanate glass fiber and 2nd order resonances at ~1694 and ~1677nm with strengths up to 14dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity ~20pm/°C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219pm/µe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, Fiber Bragg grating (FBG) structures have been inscribed in single-core passive germanate and three-core passive and active tellurite glass fibers using 800 nm femtosecond (fs) laser and phase mask technique. With fs peak power intensity in the order of 10(11)W/cm(2), the FBG spectra with 2nd and 3rd order resonances at 1540 and 1033 nm in the germanate glass fiber and 2nd order resonances at approximately 1694 and approximately 1677 nm with strengths up to 14 dB in all three cores in the tellurite fiber were observed. Thermal responsivities of the FBGs made in these mid-IR glass fibers were characterized, showing average temperature responsivity approximately 20 pm/ degrees C. Strain responsivities of the FBGs in germanate glass fiber were measured to be 1.219 pm/microepsilon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resonant slow light structures created along a thin-walled optical capillary by nanoscale deformation of its surface can perform comprehensive simultaneous detection and manipulation of microfluidic components. This concept is illustrated with a model of a 0.5 mm long, 5 nm high, triangular bottle resonator created at a 50 μm radius silica capillary containing floating microparticles. The developed theory shows that the microparticle positions can be determined from the bottle resonator spectrum. In addition, the microparticles can be driven and simultaneously positioned at predetermined locations by the localized electromagnetic field created by the optimized superposition of eigenstates of this resonator, thus exhibiting a multicomponent, near-field optical tweezer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents detailed investigation of UV inscribed fibre grating based devices and novel developments in the applications of such devices in optical sensing and fibre laser systems. The major contribution of this PhD programme includes the systematic study on fabrication, spectral characteristics and applications of different types of UV written in-fibre gratings such as Type I and IA Fibre Bragg Gratings (FBGs), Chirped Fibre Bragg Gratings (CFBGs) and Tilted Fibre Gratings (TFGs) with small, large and 45º tilted structures inscribed in normal silica fibre. Three fabrication techniques including holographic, phase-mask and blank beam exposure scanning, which were employed to fabricate a range of gratings in standard single mode fibre, are fully discussed. The thesis reports the creation of smart structures with self-sensing capability by embedding FBG-array sensors in Al matrix composite. In another part of this study, we have demonstrated the particular significant improvements made in sensitising standard FBGs to the chemical surrounding medium by inducing microstructure to the grating by femtosecond (fs) patterning assisted chemical etching technique. Also, a major work is presented for the investigation on the structures, inscription methods and spectral Polarisation Dependent Loss (PDL) and thermal characteristics of different angle TFGs. Finally, a very novel application in realising stable single polarisation and multiwavelength switchable Erbium Doped Fibre Lasers (EDFLs) using intracavity polarisation selective filters based on TFG devices with tilted structures at small, large and exact 45° angles forms another important contribution of this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A technique for interrogating multiplexed fibre Bragg grating (FBG) sensors using an arrayed waveguide grating (AWG) is described. The approach considerably extends the sensing range from that achieved previously, while providing a strain resolution of 17nevHz at 30 Hz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate interferometric sensors. A single broad-band light source is used to illuminate the system. Reflected spectral information is directed to an AWG with integral photodetectors providing 40 electrical outputs. We show that using the dual-wavelength technique we can measure the length of a Fabry-Perot cavity by determining the optical phase changes of the scanned interferometric pattern, which produced a maximum unambiguous range of 1440 mum with an active sensor and a maximum unambiguous range of 300 mum with the introduction of a second processing interferometer, which allows the sensor to be passive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We experimentally investigate the use of an arrayed waveguide grating (AWG) to interrogate fibre Bragg grating (FBG) sensors. A broadband light source is used to illuminate the FBG sensors. Reflected spectral information is directed to the AWG containing integral photodetectors providing 40 electrical outputs. Three methods are described to interrogate FBG sensors. The first technique makes use of the wavelength-dependent transmission profile of an AWG channel passband, giving a usable range of 500 µe and a dynamic strain resolution of 96 ne Hz-1/2 at 13 Hz. The second approach utilizes wide gratings larger than the channel spacing of the AWG; by monitoring the intensity present in several neighbouring AWG channels an improved range of 1890 µe was achieved. The third method improves the dynamic range by utilizing a heterodyne approach based on interferometric wavelength shift detection, providing an improved dynamic strain resolution of 17 ne Hz-1/2 at 30 Hz.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.