21 resultados para resistance mechanisms

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Misuse of biocides has encouraged the emergence of resistance and cross-resistance in certain strains. This study investigated resistance of triclosan-adapted Escherichia coli K-12 and E. coli O55 to antimicrobial agents and compared these to E. coli O157:H7. Cross-resistance in E. coli K-12 and E. coli O55 was observed however to a lesser extent than in E. coli O157:H7. Triclosan-adapted E. coli K-12 demonstrated cross-resistance to chloramphenicol, whereas triclosan-adapted E. coli O55 exhibited resistance to trimethoprim. In comparison, E. coli O157:H7 was resistant to chloramphenicol, tetracycline, amoxicillin, amoxicillin/clavulanic acid, trimethoprim, benzalkonium chloride and chlorohexidine suggesting strain specific rather than general resistance mechanisms. © 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Solid tumours display a complex drug resistance phenotype that involves inherent and acquired mechanisms. Multicellular resistance is an inherent feature of solid tumours and is known to present significant barriers to drug permeation in tumours. Given this barrier, do acquired resistance mechanisms such as P-glycoprotein (P-gp) contribute significantly to resistance? To address this question, the multicellular tumour spheroid (MCTS) model was used to examine the influence of P-gp on drug distribution in solid tissue. Tumour spheroids (TS) were generated from either drug-sensitive MCF7WT cells or a drug-resistant, P-gp-expressing derivative MCF7Adr. Confocal microscopy was used to measure time courses and distribution patterns of three fluorescent compounds; calcein-AM, rhodamine123 and BODIPY-taxol. These compounds were chosen because they are all substrates for P-gp-mediated transport, exhibit high fluorescence and are chemically dissimilar. For example, BODIPY-taxol and rhodamine 123 showed high accumulation and distributed extensively throughout the TSWT, whereas calcein-AM accumulation was restricted to the outermost layers. The presence of P-gp in TSAdr resulted in negligible accumulation, regardless of the compound. Moreover, the inhibition of P-gp by nicardipine restored intracellular accumulation and distribution patterns to levels observed in TSWT. The results demonstrate the effectiveness of P-gp in modulating drug distribution in solid tumour models. However, the penetration of agents throughout the tissue is strongly determined by the physico-chemical properties of the individual compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neurons in the developing brain die via apoptosis after DNA damage, while neurons in the adult brain are generally resistant to these insults. The basis for this resistance is a matter of conjecture. We report here that cerebellar granule neurons (CGNs) in culture lose their competence to die in response to DNA damage as a function of time in culture. CGNs at either 1 day in vitro (DIV) or 7 DIV were treated with the DNA damaging agents camptothecin, UV or gamma-irradiation and neuronal survival measured. The younger neurons were effectively killed by these agents, while the older neurons displayed a significant resistance to killing. Neuronal survival did not change with time in culture when cells were treated with C2-ceramide or staurosporine, agents which do not target DNA. The resistance to UV irradiation developed over time in culture and was not due to changes in mitotic rate. Increases in DNA strand breakage, up-regulation of the levels of both p53 and its phosphorylated form and nuclear translocation of p53 were equivalent in both older and younger neurons, indicating a comparable p53 stress response. In addition, we show that treatment of older neurons with pharmacological inhibitors of distinct components of the DNA repair machinery promotes the accumulation of DNA damage and sensitizes these cells to the toxic effects of UV exposure. These data demonstrate that older neurons appear to be more proficient in DNA repair in comparison to their younger counterparts, and that this leads to increased survival after DNA damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oleate has been shown to protect against palmitate-induced insulin resistance. The present study investigates mechanisms involved in the interaction between oleate and palmitate on insulin-stimulated glucose uptake by L6 skeletal muscle cells. L6 myotubes were cultured for 6 h with palmitate or oleate alone, and combinations of palmitate with oleate, with and without phosphatidylinositol 3-kinase (PI3-kinase) inhibition. Insulin-stimulated glucose uptake, measured by uptake of 2-deoxy-d-[3H]glucose, was almost completely prevented by 300 microm-palmitate. Cells incubated with oleate up to 750 micromol/l maintained a significant increase in insulin-stimulated glucose uptake. Co-incubation of 50-300 microm-oleate with 300 microm-palmitate partially prevented the decrease in insulin-stimulated glucose uptake associated with palmitate. Adding the PI3-kinase inhibitors wortmannin (10- 7 mol/l) or LY294002 (25 micromol/l) to 50 microm-oleate plus 300 microm-palmitate significantly reduced the beneficial effect of oleate against palmitate-induced insulin resistance, indicating that activation of PI3-kinase is involved in the protective effect of oleate. Thus, the prevention of palmitate-induced insulin resistance by oleate in L6 muscle cells is associated with the ability of oleate to maintain insulin signalling through PI3-kinase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alteration in the target sites of antibiotics is a common mechanism of resistance. Examples of clinical strains showing resistance can be found for every class of antibiotic, regardless of the mechanism of action. Target site changes often result from spontaneous mutation of a bacterial gene on the chromosome and selection in the presence of the antibiotic. Examples include mutations in RNA polymerase and DNA gyrase, resulting in resistance to the rifamycins and quinolones, respectively. In other cases, acquisition of resistance may involve transfer of resistance genes from other organisms by some form of genetic exchange (conjugation, transduction, or transformation). Examples of these mechanisms include acquisition of the mecA genes encoding methicillin resistance in Staphylococcus aureus and the various van genes in enterococci encoding resistance to glycopeptides. © 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature relating to evaporation from single droplets of pure liquids, and to the drying of droplets containing solids and of droplet sprays has been reviewed. The heat and mass transfer rates for a single droplet suspended from a nozzle were studied within a 42mm I.D. horizontal wind tunnel designed to supply hot dry air, to simulate conditions encountered in a practical spray dryer. A novel rotating glass nozzle was developed to facilitate direct measurements of droplet weight and core temperature. This design minimised heat conduction through the nozzle. Revised correlations were obtained for heat and mass transfer coefficients, for evaporation from pure water droplets suspended from a rotating nozzle. Nu = 2.0 + 0.27 (l/B)°-18Re°-5Pr°-83 Sh = 2.0 + 0.575 ((T0-T.)/Tomfc) -o.o4Reo.5 ^0.33 Experimental drying studies were carried out on single droplets of different types of skin-forming materials, namely, custard, gelatin, skim milk and fructose at air temperatures ranging from 19°C to 198°C. Dried crusts were recovered and examined by Scanning Electron Microscopy. Skin-forming materials were classified into three types according to the mechanisms of skin formation. In the first type (typified by droplets of custard and starch) skin formed due to gelatinisation at high temperatures. Increasing the drying temperature resulted in increased crust resistance to mass transfer due to increased granule swelling and the crust resistance was completely transferred to a skin resistance at drying temperatures > 150°C. In the second type e.g. gelatin droplets the skin formed immediately drying had taken place at any drying temperature. At drying temperature > 60° C a more resistant skin was formed. In the third type (typified by droplets of skim milk and fructose) the skin appeared on the droplet surface at a certain stage of the drying process under any drying conditions. As the drying temperature was increased the resistance of the skin to mass transfer increased. The drying rate history of any material depended upon the nature of the skin formed which, in turn, depended upon the drying conditions. A mathematical model was proposed for the drying of the first type of skin-forming material. This was based on the assumption that, once all the granules gelatinised at the gelatinisation temperature, a skin appeared instantaneously on the droplet surface. The experimentally-observed times at which the skin appeared on the droplets surfaces were in excellent agreement with those predicted from the model. The work should assist in understanding the fundamentals of paniculate drying processes, particularly when skin-formation occurs and may be a crucial factor in volatiles retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of compounds containing quinonoid or hindered phenol functions were examined for their roles as antifatigue agents. Among the evaluated quinones and phenols expected to have macroalkyl radical scavenging ability, BQ, αTOC, γTOC and GM showed relatively good performance for fatigue resistance (although their performance was slightly less effective than the commercial aromatic amine antioxidants, IPPD and 6PPD). The compounds which were shown to have higher reactivity with alkyl radicals (via calculated reactivity indices) showed better fatigue resistance. This fact supports the suggestion that strong alkyl radical scavengers should be also effective antifatigue agents. Evidence produced based on calculation of reactivity indices suggests that the quinones examined react with alkyl radicals on the meta position of the quinone rings producing phenoxyl radicals. The phenoxyl radicals are expected either to disproportionate, to recombine with a further alkyl radical, or to abstract a hydrogen from another alkyl radical producing an olefine. The regeneration of quinones and formation of the corresponding phenols is expected to occur during the antifatigue activity. The phenol antioxidant, HBA is expected to produce a quinonoid compound and this is also expected to function in a similar way to other quinones. Another phenol, GM, which is also known to scavenge alkyl radicals showed good antifatigue performance. Tocopherols had effective antifatigue activity and are expected to have different antifatigue mechanisms from that of other quinones, hence αTOC was examined for its mechanisms during rubber fatiguing using HPLC analysis. Trimers of αTOC which were produced during vulcanisation are suggested to contribute to the fatigue activity observed. The evidence suggests that the trimers reproduce αTOC and a mechanism was proposed. Although antifatigue agents evaluated showed antifatigue activity, most of them had poor thermoxidative resistance, hence it was necessary to compensate for this by using a combination of antioxidants with the antifatigue agents. Reactive antioxidants which have the potential to graft on the polymer chains during reactive processing were used for this purpose. APMA was the most effective antioxidant among other evaluated reactive antioxidants. Although high ratio of grafting was achieved after optimisation of grafting conditions, it is suggested that this was achieved by long branches of APMA due to large extent of polymerisation. This is expected to cause maldistribution of APMA leading to reducing the effect of CB-D activity (while CB-A activity showed clear advantages for grafting). Further optimisation of grafting conditions is required in order to use APMA more effectively. Moreover, although synergistic effects between APMA and antifatigue agents were expected, none of the evaluated antifatigue agents, BQ, αTOC, γTOC and TMQ, showed significant synergism both in fatigue and thermoxidative resistance. They performed just as additives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to investigate antibacterial agents for use in disinfectant formulation in conjunction with benzalkonium chloride (BKC), and if possible, to synthesise novel agents based upon successful structures. Development of resistance to antibacterial agents following long-term exposure of P. aeruginosa to BKC was also investigated, examining cross-resistance to clinically relevant antibiotics and determining mechanisms of resistance. In this study over 50 compounds were examined for antibacterial action against P. aeruginosa, both alone and in conjunction with BKC. Successful compounds were used to design novel agents, based upon the acridine ring structure, some of which showed synergy with BKC. In 15 of the 16 strains exposed to increasing concentrations of BKC, resistance to the disinfectant arose. Strains PAO1 and OO14 were examined further, each showing stable BKC resistance and a slightly varying profile of cross-resistance. In strain PAO1 alterations in the fatty acids of the cytoplasmic membrane, increase in expression of OprG, decrease in susceptibility to EDTA as an outer membrane permeabilising agent and an increase in negativity of the cell surface charge were observed as cells became more resistant to BKC. In strain OO14 a decrease in whole cell phosphatidylcholine content, a decrease in binding/uptake of BKC and an increase in cell surface hydrophobicity were observed as cells became more resistant to BKC. Resistance to tobramycin in strain OO14 was initially high, but fell as cells were adapted to BKC, this coincided with a quantitative reduction of plasmid DNA in the cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial resistance to antibiotics and biocides is a prevalent problem, which may be exacerbated by the commonplace and often unnecessary inclusion of biocides into domestic products. Addition of antimicrobials, to domestic disinfectants has raised concern about promoting microbial resistance and potential cross-resistance to therapeutic antibiotics. This study investigated the potential for resistance in Salmonella enterica serovars Enteritidis, Typhimurium, Virchow and Escherichia call 0157 to commonly used biocides, to identify mechanisms underlying resistance and whether these provided cross-resistance to antibiotics. Salmonella enterica and E. coli 0157 strains were serially exposed to sub-inhibitory. concentrations of erythromycin (ERY), benzalkonium chloride (BKC), chlorhexidine hydrochloride (CHX)and triclosan (TLN). Once resistance was achieved permeability changes in the outer membrane, including LPS, cell surface charge and hydrophobicityand the presence of,an active efflux were investigated as possible resistance candidates. Thin layer chromatography (TLC) and Gas chromatography (GC) were carried out to examine fatty acid and lipid changes in E. coli 0157 isolates with reduced susceptibility to TLN. Cross-resistance was studied by the Stoke's method and standard microdilution assays. Examination of the outer membrane proteins and LPS did not reveal any significant changes between parent and resistant strains. The hydrophobicity of the cells increased as the cells were passaged and became less. susceptible. An active efflux system was the most likely mechanism of resistance in all strains tested and a fab1 mutation was associated with E. coli 0157 resistant to TLN isolates. In all isolates investigated the resistance was stable for over 30 passages in biocide-free media. A high degree of cross-resistance was obtained in TLN-resjstant Escherichia coli 0157 strains, which repeatedly exerted decreased susceptibility to various antimicrobials, including chloramphenicol, erythromycin, imipenem, tetracycline and trimethoprirn:, as well as to various biocides. The results of this laboratory-based investigation suggest that it is possible for microorganisms to become resistant to biocides when repeatedly exposed to sublethal concentrations. This may be especially the case in the domestic environment where administration of biocides is poorly controlled. Eventually it could lead to the undesirable situation of resident strains becoming resistant to disinfection and cross resistant to other antimicrobials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Staphylococcus epidermidis are common Gram-positive bacteria and are responsible for a number of life-threatening nosocomial infections. Treatment of S. epidermidis infection is problematic because the organism is usually resistant to many antibiotics. The high degree of resistance of this organism to a range of antibiotics and disinfectants is widely known. The aims of this thesis were to investigate and evaluate the susceptibility of isolates of S. epidermidis from various infections to chlorhexidine (CHX) and to other disinfectants such as benzalkonium chloride (BKC), triclosan (TLN) and povidone-iodine (PI). In addition, the mechanisms of resistance of S. epidermidis to chlorhexidine (the original isolates and strains adapted to chlorhexidine by serial passage) were examined and co-resistance to clinically relevant antibiotics investigated. In 3 of the 11 S. epidermidis strains passaged in increasing concentrations of chlorhexidine, resistance to the disinfectant arose (16-fold). These strains were examined further, each showing stable chlorhexidine resistance. Co-resistance to other disinfectants such as BKC, TLN and PI and changes in cell surface hydrophobicity were observed. Increases in resistance were accompanied by an increase in the proportion of neutral lipids and phospholipids in the cell membrane. This increase was most marked in diphosphatidylglycerol. These observations suggest that some strains of S. epidermidis can become resistant to chlorhexidine and related disinfectants/antiseptics by continual exposure. The mechanisms of resistance appear to be related to changes in membrane lipid compositions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis focuses on the investigation of the abrasion resistance of fibre reinforced concrete floors at both the macro and micro levels. A literature review of the available literature concerning subjects allied to the current project is included. This highlights themes relevant to wear mechanisms and the factors influencing it: factors that affect the abrasion resistance of concrete and several test methods for assessing it; and the historical development of fibres and the properties of different fibre types and their influence on concrete. Three accelerated abrasion testers were compared and critically discussed for their suitability for assessing the abrasion resistance of concrete floors. Based on the experimental findings one accelerated abrasion apparatus was selected as more appropriate to be used for carrying out the main investigations. The laboratory programme that followed was undertaken to investigate the influence of various material and construction factors on abrasion resistance. These included mix variations (w/c ratio), fibre reinforcement, geometry, type and volume, curing method and superplasticizing agents. The results clearly show that these factors significantly affected abrasion resistance and several mechanisms were presumed to explain and better understand these observations. To verify and understand these mechanisms that are accountable for the breakdown of concrete slabs, the same concrete specimens that were used for the macro-study, were also subjected to microstructutural investigations using techniques such as Microhardness examination, Mercury intrusion porosimetry and Petrographic examination. It has been found that the abrasion resistance of concrete is primarily dependent on the microstructure and porosity of the concrete nearest to the surface. The feasibility of predicting the abrasion resistance of fibre reinforced concrete floors by indirect and non-destructive methods was investigated using five methods that have frequently been used for assessing the quality of concrete. They included the initial surface absorption test, the impact test, ball cratering, the scratch test and the base hardness test. The impact resistance (BRE screed tester) and scratch resistance (Base hardness tester) were found to be the most sensitive to factors affecting abrasion resistance and hence are considered to be the most appropriate testing techniques. In an attempt to develop an appropriate method for assessing the abrasion resistance of heavy-duty industrial concrete floors, it was found that the presence of curing/sealing compound on the concrete surface at the time of accelerated abrasion testing produces inappropriate results. A preliminary investigation in the direction of modifying the Aston accelerated abrasion tester has been carried out and a more aggressive head has been developed and is pending future research towards standardisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes an experimental study of the abrasion resistance of concrete at both the macro and micro levels. This is preceded by a review related to friction and wear, methods of test for assessing abrasion resistance, and factors influencing the abrasion resistance of concrete. A versatile test apparatus was developed to assess the abrasion resistance of concrete. This could be operated in three modes and a standardised procedure was established for all tests. A laboratory programme was undertaken to investigate the influence, on abrasion resistance, of three major factors - finishing techniques, curing regimes and surface treatments. The results clearly show that abrasion resistance was significantly affected by these factors, and tentative mechanisms were postulated to explain these observations. To substantiate these mechanisms, the concrete specimens from the macro-study were subjected to micro-structural investigation, using such techniques as 'Mercury Intrusion Forosimetry, Microhardness, Scanning Electron Microscopy, Petrography and Differential Thermal Analysis. The results of this programme clearly demonstrated that the abrasion resistance of concrete is primarily dependent on the microstructure of the concrete nearest to the surface. The viability of indirectly assessing the abrasion resistance was investigated using three non-destructive techniques - Ultrasonic Pulse Velocity, Schmidt Rebound Hardness, and the Initial Surface Absorption Test. The Initial Surface Absorption was found to be most sensitive to factors which were shown to have influenced the abrasion resistance of concrete. An extensive field investigation was also undertaken. The results were used to compare site and laboratorypractices, and the performance in the accelerated abrasion test with the service wear. From this study, criteria were developed for assessing the quality of concrete floor slabs in terms of abrasion resistance.