15 resultados para relative growth rate (RGR)

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association between lobe connections and the degree of lobe crowding and radial growth was studied in thalli of the foliose lichen Xanthoparmelia conspersa. In 35 thalli, 15% of the lobes were not physically connected to either of their neighbours before the lobes merged into the centre of the thallus. Twenty-five percent of the lobes were connected in pairs and 29% in groups of three. Approximately 5% of the lobes were interconnected in larger groups of six or more. The mean number of lobes per group in a thallus was positively correlated with thallus diameter and with the degree of lobe growth variation but was unrelated to annual radial growth rate (RGR). The degree of crowding of the lobes in a thallus was defined as a 'crowding index', viz., the product of lobe density and mean lobe width. Crowding index increased rapidly with size in smaller thalli but changed less with size in larger thalli. Crowding index was positively correlated with RGR but was unrelated to lobe growth variation. Lobes removed from large thalli and glued in various configurations to simulate different degrees of crowding did not demonstrate an association between lobe crowding and RGR over one year. These results suggest that the pattern of lobe connectivity of a thallus is associated with lobe growth variation in X. conspersa. The degree of lobe crowding is associated with the increase in RGR with thallus size in smaller thalli and by restricting lobe width, could also be a factor associated with the more constant growth of larger thalli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal growth was studied in the slow-growing crustose lichen Rhizocarpon geographicum (L.) DC. in an area of South Gwynedd, Wales. Radial growth rate (RGR) of a sample of 20 thalli was measured in situ at three-month intervals over 51 months on a southeast-facing rock surface. There were five periods of significant growth: July-September of 1993, 1994 and 1995, in January-March of 1996, and in April-June of 1997. In four of these periods, growth coincided with a mean temperature maximum (Tmax) over a three-month period exceeding 15°C and three of the maxima with greater than 450 sunshine hours. Two of the growth maxima coincided with periods of total rainfall exceeding 300 mm and one with greater than 50 rain days in a three-month period. There were no significant linear correlations between RGR and the climatic variables measured. However, there were significant non-linear relationships between RGR and Tmax, the mean temperature minimum (Tmin), the total number of air and ground frosts and the number of rain days in a growth period, the relationship with Tmax being the most significant. Hence, in south Gwynedd, maximum growth of R. geographicum occurs in any season although the period July-September appears to be the most favourable. Relationships between growth and climatic variables were non-linear, temperature having the most significant influence on seasonal growth. ©2006 Balaban.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The margins of foliose lichen thalli comprise individual lobes which grow radially and divide. This results in a complex marginal structure in which lobes differing in morphology, state of division, and growth pattern are crowded together. Various aspects of the biology of these lobes are reviewed including their carbohydrate supply, morphology, pattern of division and branching, the effect of lobe overcrowding and interactions between neighbouring lobes. As the thalus grows, lobes become increasingly crowded together and this restricts further lateral growth. Restriction of lobe width may be reponsible for the changes in radial growth rate (RGR) with size observed in foliose species. Various aspects of lobe biology may be responsible for lobe growth variation including the physical independence of lobes from their neighbours, the genetic origin of the lobes, and the pattern of lobe branching. Overall symmetry of a thallus is maintained by a fluctuating pattern of growth of individual lobes in successive months together with competition for space at the margin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pattern of seasonal growth and the relation of growth rate to colony size were studied in four foliose and two crustose species of saxicolous lichens. A new method of measuring growth was used whereby the advance of a sample of lobes along millimetres marked on the substrate was measured under a magnification of x10. Three peaks of growth were found(in March, June and November) for the foliose species and a single peak (in May to August) for the crustose species. THe peaks of growth corresponded approximately to peaks of rainfall. Growth rate in relation to increasing colony size fell in a smooth exponential curve when expressed on a cm squared/ cm squared/ unit time basis. The result is consistent with a linear radial rate for most of the thallus sizes for the six species. There is also evidence for an exponential incresae in growth rate initially until about 1.5 cm thallus diameter in two of the sepcies when the linear radial rate is achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in the radial growth rate (RGR mm/yr) through life were studied in thalli of the foliose lichen Parmelia conspersa by two methods: (1) a cross-sectional study (Study A) in which the RGR was measured in 60 thalli from 0.2 to 13 cm in diameter, and (2) by radial growth measurements over 4.5 years of fragments, consisting of a single major lobe, which were removed from large thalli and glued to pieces of slate (Study B). Both studies suggested there was a phase of increasing RGR in small thalli followed by a more constant phase, the latter beginning at approximately a thallus radius of 6-8 mm. However, in Study B significantly increased RGR was observed during the second 6-month growth period. This phase of growth was more likely to be due to an increase in lobe width than to an effect of climate. In addition, a lobe in a large thallus with both adjacent lobes removed significantly increased in width over 1 year compared with control lobes. These results suggest that (1) mean lobe width in a thallus may be determined by the intensity of marginal competition between adjacent lobes, and (2) changes in lobe width during the life of a lichen thallus may be a factor determining the establishment of the linear phase of growth in foliose lichens. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the growth curve of the lichen Rhizocarpon geographicum were obtained by measuring the radial growth rates (mm per 1.5 years) of 39 thalli from 2 to 65 mm in diameter growing in the same environment. An Aplin and Hill plot (r2 – r1 against ln r2 – ln r1) of the data and regression analyses suggested an initial phase of growth (up to a diameter of about 7 mm) in which the relative growth rate increased rapidly. This was followed by a phase in which the relative growth rate fell but the radial growth rate continued to rise (7 to 20 mm in diameter). Radial growth was then relatively constant until about 45 mm diameter and then declined. The Aplin and Hill model did not fit the data as a whole but may apply for a transient period in thalli between about 7 and 16 mm in diameter. The curve shows some similarities to that suggested by lichenometric studies but differs in showing a less steep decline in growth rate after the ‘great’ period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth rates of thalli of foliose saxicolous lichens before and after the linear phase of growth were measured in 1973. Changes in the radial growth rate (measured as mm/year) with thallus size in the prelinear phase (thalli less than approximately 1.5 cm in diameter) were consistent with the hypothesis that early growth of these lichens is loagarithmic. When growth in the prelinear phase was measured as a relative growth rate (measured as sq cm/sq cm/year) there was a rapid rise in growth rate until about 3 mm thallus diameter and then a decline in growth rate. The radial growth rate of non-fragmenting thalli when compared with fragmenting thalli at different stages of fragmentation suggested that radial growth rate does not significantly decline after fragmentation of the thallus. This result is not consistent with a postlinear phase in the radial growth of a lichen thallus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of studies of the effects of environmental factors on lichen growth have been carried out in the field. Growth of lichens in the field has been measured as absolute growth rate (e.g., length growth, radial growth, diameter growth, area growth, or dry weight gain per unit of time) or as a relative growth rate, expressed per unit of thallus area or weight, e.g., thallus specific weight. Seasonal fluctuations in growth in the field often correlate best with changes in average or total rainfall or frequency of rain events through the year. In some regions of the world, temperature is also an important climatic factor influencing growth. Interactions between microclimatic factors such as light intensity, temperature, and moisture are particularly important in determining local differences in growth especially in relation to aspect and slope of rock surface, or height on a tree. Factors associated with the substratum including type, chemistry, texture, and porosity can all influence growth. In addition, growth can be influenced by the degree of nutrient enrichment of the substratum associated with bird droppings, nitrogen, phosphate, salinity, or pollution. Effects of environmental factors on growth can act directly to restrict species distribution or indirectly by altering the competitive balance among different species in a community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth curves of four common species of crustose lichens, viz., Buellia aethalea (Ach.) Th. Fr., Lecidea tumida Massai., Rhizocarpon geographicum (L.) DC., and Rhizocarpon reductum Th. Fr. were studied at a site in south Gwynedd, north Wales, UK. Radial growth rates (RGR, mm 1.5 yr-1) were greatest in thalli of R. reductum and least in R. geographicum. Variation in RGR between thalli was greater in B. aethalea and L. tumida than in the species of Rhizocarpon. The relationship between growth rate and thallus diameter was not asymptotic; RGR increasing in smaller thalli to a maximum and then declining in larger diameter thalli. A polynomial curve was fitted to the data; the growth curves being fitted best by a second-order (quadratic) curve, the best fit to this model being shown by B. aethalea. A significant linear regression with a negative slope was also fitted to the growth of the larger thalli of each species. The data suggest that the growth curves of the four crustose lichens differ significantly from the asymptotic curves of foliose lichen species. A phase of declining RGR in larger thalli appears to be characteristic of crustose lichens and is consistent with data from lichenometric studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crustose species are the slowest growing of all lichens. Their slow growth and longevity, especially of the yellow-green Rhizocarpon group, has made them important for surface-exposure dating (‘lichenometry’). This review considers various aspects of the growth of crustose lichens revealed by direct measurement including: 1) early growth and development, 2) radial growth rates (RGR, mm yr-1), 3) the growth rate-size curve, and 4) the influence of environmental factors. Many crustose species comprise discrete areolae that contain the algal partner growing on the surface of a non-lichenised fungal hypothallus. Recent data suggest that ‘primary’ areolae may develop from free-living algal cells on the substratum while ‘secondary’ areolae develop from zoospores produced within the thallus. In more extreme environments, the RGR of crustose species may be exceptionally slow but considerably faster rates of growth have been recorded under more favourable conditions. The growth curves of crustose lichens with a marginal hypothallus may differ from the ‘asymptotic’ type of curve recorded in foliose and placodioid species and the latter are characterized by a phase of increasing RGR to a maximum and may be followed by a phase of decreasing growth. The decline in RGR in larger thalli may be attributable to a reduction in the efficiency of translocation of carbohydrate to the thallus margin or to an increased allocation of carbon to support mature ‘reproductive’ areolae. Crustose species have a low RGR accompanied by a low demand for nutrients and an increased allocation of carbon for stress resistance; therefore enabling colonization of more extreme environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizocarpon geographicum (L.) DC. is one of the most widely distributed species of crustose lichens. This unusual organism comprises yellow-green ‘areolae’ that contain the algal symbiont which develop and grow on the surface of a non-lichenized, fungal ‘hypothallus’ that extends beyond the margin of the areolae to form a marginal ring. This species grows exceptionally slowly with annual radial growth rates (RGR) as low as 0.07 mm yr-1 and its considerable longevity has been exploited by geologists in the development of methods of dating the age of exposure of rock surfaces and glacial moraines (‘lichenometry’). Recent research has established some aspects of the basic biology of this important and interesting organism. This chapter describes the general structure of R. geographicum, how the areolae and hypothallus develop, why the lichen grows so slowly, the growth rate-size curve, and some aspects of the ecology of R. geographicum including whether the lichen can inhibit the growth of its neighbours by chemical means (‘allelopathy’). Finally, the importance of R. geographicum in direct and indirect lichenometry is reviewed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. © 2011 Elsevier B.V. All rights reserved.