5 resultados para reducing power
em Aston University Research Archive
Resumo:
Various micro-radial compressor configurations were investigated using one-dimensional meanline and computational fluid dynamics (CFD) techniques for use in a micro gas turbine (MGT) domestic combined heat and power (DCHP) application. Blade backsweep, shaft speed, and blade height were varied at a constant pressure ratio. Shaft speeds were limited to 220 000 r/min, to enable the use of a turbocharger bearing platform. Off-design compressor performance was established and used to determine the MGT performance envelope; this in turn was used to assess potential cost and environmental savings in a heat-led DCHP operating scenario within the target market of a detached family home. A low target-stage pressure ratio provided an opportunity to reduce diffusion within the impeller. Critically for DCHP, this produced very regular flow, which improved impeller performance for a wider operating envelope. The best performing impeller was a low-speed, 170 000 r/min, low-backsweep, 15° configuration producing 71.76 per cent stage efficiency at a pressure ratio of 2.20. This produced an MGT design point system efficiency of 14.85 per cent at 993 W, matching prime movers in the latest commercial DCHP units. Cost and CO2 savings were 10.7 per cent and 6.3 per cent, respectively, for annual power demands of 17.4 MWht and 6.1 MWhe compared to a standard condensing boiler (with grid) installation. The maximum cost saving (on design point) was 14.2 per cent for annual power demands of 22.62 MWht and 6.1 MWhe corresponding to an 8.1 per cent CO2 saving. When sizing, maximum savings were found with larger heat demands. When sized, maximum savings could be made by encouraging more electricity export either by reducing household electricity consumption or by increasing machine efficiency.
Reductions of peak-to-average power ratio and optical beat interference in cost-effective OFDMA-PONs
Resumo:
The peak-to-average power ratio (PAPR) and optical beat interference (OBI) effects are examined thoroughly in orthogonal frequency-division multiplexing access (OFDMA)-passive optical networks (PONs) at a signal bit rate up to ∼ 20 Gb/s per channel using cost-effective intensity-modulation and direct-detection (IM/DD). Single-channel OOFDM and upstream multichannel OFDM-PONs are investigated for up to six users. A number of techniques for mitigating the PAPR and OBI effects are presented and evaluated including adaptive-loading algorithms such as bit/power-loading, clipping for PAPR reduction, and thermal detuning (TD) for the OBI suppression. It is shown that the bit-loading algorithm is a very efficient PAPR reduction technique by reducing it at about 1.2 dB over 100 Km of transmission. It is also revealed that the optimum method for suppressing the OBI is the TD + bit-loading. For a targeted BER of 1 × 10-3, the minimum allowed channel spacing is 11 GHz when employing six users. © 2013 Springer Science+Business Media New York.
Resumo:
The availability of regular supply has been identified as one of the major stimulants for the growth and development of any nation and is thus important for the economic well-being of a nation. The problems of the Nigerian power sector stems from a lot of factors culminating in her slow developmental growth and inability to meet the power demands of her citizens regardless of the abundance of human and natural resources prevalent in the nation. The research therefore had the main aim of investigating the importance and contributions of risk management to the success of projects specific to the power sector. To achieve this aim it was pertinent to examine the efficacy of risk management process in practice and elucidate the various risks typically associated with projects (Construction, Contractual, Political, Financial, Design, Human resource and Environmental risk factors) in the power sector as well as determine the current situation of risk management practice in Nigeria. To address this factors inhibiting the proficiency of the overarching and prevailing issue which have only been subject to limited in-depth academic research, a rigorous mixed research method was adopted (quantitative and qualitative data analysis). A review of the Nigeria power sector was also carried out as a precursor to the data collection stage. Using purposive sampling technique, respondents were identified and a questionnaire survey was administered. The research hypotheses were tested using inferential statistics (Pearson correlation, Chi-square test, t-test and ANOVA technique) and the findings revealed the need for the development of a new risk management implementation Framework. The proposed Framework was tested within a company project, for interpreting the dynamism and essential benefits of risk management with the aim of improving the project performances (time), reducing the level of fragmentation (quality) and improving profitability (cost) within the Nigerian power sector in order to bridge a gap between theory and practice. It was concluded that Nigeria’s poor risk management practices have prevented it from experiencing strong growth and development. The study however, concludes that the successful implementation of the developed risk management framework may help it to attain this status by enabling it to become more prepared and flexible, to face challenges that previously led to project failures, and thus contributing to its prosperity. The research study provides an original contribution theoretically, methodologically and practically which adds to the project risk management body of knowledge and to the Nigerian power sector.
Resumo:
The PMSG-based wind power generation system protection is presented in this paper. For large-scale systems, a voltagesource converter rectifier is included. Protection circuits for this topology are studied with simulation results for cable permanent fault conditions. These electrical protection methods are all in terms of dumping redundant energy resulting from disrupted path of power delivery. Pitch control of large-scale wind turbines are considered for effectively reducing rotor shaft overspeed. Detailed analysis and calculation of damping power and resistances are presented. Simulation results including fault overcurrent, DC-link overvoltage and wind turbine overspeed are shown to illustrate the system responses under different protection schemes to compare their application and effectiveness.
Resumo:
High-volume capacitance is required to buffer the power difference between the input and output ports in single-phase grid-connected photovoltaic inverters, which become an obstacle to high system efficiency and long device lifetime. Furthermore, total harmonic distortion becomes serious when the system runs into low power level. In this study, a comprehensive analysis is introduced for two-stage topology with the consideration of active power, DC-link (DCL) voltage, ripple and capacitance. This study proposed a comprehensive DCL voltage control strategy to minimise the DCL capacitance while maintaining a normal system operation. Furthermore, the proposed control strategy is flexible to be integrated with the pulse-skipping control that significantly improves the power quality at light power conditions. Since the proposed control strategy needs to vary DCL voltage, an active protection scheme is also introduced to prevent any voltage violation across the DCL. The proposed control strategy is evaluated by both simulation and experiments, whose results confirm the system effectiveness.