5 resultados para recrystallization (metallurgy)

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of published literature was made to establish the fundamental aspects of rolling and allow an experimental programme to be planned. Simulated hot rolling tests, using pure lead as a model material, were performed on a laboratory mill to obtain data on load and torque when rolling square section stock. Billet metallurgy and consolidation of representative defects was studied when modelling the rolling of continuously cast square stock with a view to determining optimal reduction schedules that would result in a product having properties to the high level found in fully wrought billets manufactured from large ingots. It is difficult to characterize sufficiently the complexity of the porous central region in a continuously cast billet for accurate modelling. However, holes drilled into a lead billet prior to rolling was found to be a good means of assessing central void consolidation in the laboratory. A rolling schedule of 30% (1.429:1) per pass to a total of 60% (2.5:1) will give a homogeneous, fully recrystallized product. To achieve central consolidation, a total reduction of approximately 70% (3.333:1) is necessary. At the reduction necessary to achieve consolidation, full recrystallization is assured. A theoretical analysis using a simplified variational principle with experimentally derived spread data has been developed for a homogeneous material. An upper bound analysis of a single, centrally situated void has been shown to give good predictions of void closure with reduction and the reduction required for void closure for initial void area fractions 0.45%. A limited number of tests in the works has indicated compliance with the results for void closure obtained in the laboratory.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation has been concerned with the behaviour of solid internal lubricant during mixing, compaction, ejection, dewaxing and sintering of iron powder compacts. Zinc stearate (0.01%-4.0%) was added to irregular iron powder by admixing or precipitation from solution. Pressure/density relationships, determined by continuous compaction, and loose packed densities were used to show that small additions of zinc stearate reduced interparticle friction during loose packing and at low compaction pressures. Large additions decreased particle/die-wall friction during compaction and ejection but also caused compaction inhibition. Transverse rupture strengths were determined on compacts containing various stearate based lubricants and it was found that green strength was reduced by the interposition of a thin lubricant layer within inter~particle contacts. Only materials much finer than the iron powder respectively) were able to form such layers. Investigations were undertaken to determine the effect of the decomposition of these lubricants on the development of mechanical properties in dewaxed or sintered compacts. Physical and chemical influences on tensile strength were observed. Decomposition of lubricants was associated with reductions of strength caused by the physical effects of pressure increases and removal of lubricant from interparticle contacts. There were also chemical effects associated with the influence of gaseous decomposition products and solid residues on sintering mechanisms. Thermogravimetry was used to study the decomposition behaviour of various lubricants as free compounds and within compacts. The influence of process variables such as atmosphere type, flow-rate and compact density were investigated. In a reducing atmosphere the decomposition of these lubricants was characterised by two stages. The first involved the rapid decomposition of the hydrocarbon radical. The second, higher temperature, reactions depended on lubricant type and involved solid residues. The removal of lubricant could also markedly affect dimensional change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation microstructures in two batches of commercially pure copper (A and B) of allnost similar composition have been studied after rolling reductions from 5% to 95%. X- ray diffraction, optical metallography, scanning electron microscopy in the back-scattered mode, transmission and scanning electron microscopy have been used to examine the deformation microstructure. At low strains (~10 %) the deformation is accommodated by uniform octahedral slip. Microbands that occur as sheet like features usually on the {111} slip planes are formed after 10% reduction. The misorientations between rnicrobonds ond the matrix are usually small (1 - 2° ) and the dislocations within the bands suggest that a single slip system has been operative. The number of microbands increases with strain, they start to cluster and rotate after 60% reduction and, after 90 %, they become almost perfectly aligned with the rolling direction. There were no detectable differences in deformation microstructure between the two materials up to a deformation level of 60% but subsequently, copper B started to develop shear bands which became very profuse by 90% reduction. By contrast, copper A at this stage of deformation developed a smooth laminated structure. This difference in the deformation microstructures has been attributed to traces of unknown impurity in D which inhibit recovery of work hardening. The preferred orientations of both were typical of deformed copper although the presence of shear bands was associated wth a slightly weaker texture. The effects of rolling temperature and grain size on deformation microstructure were also investigated. It was concluded that lowering the rolling temperature or increasing the initial grain size encourages the material to develop shear bands after heavy deformation. Recovery and recrystallization have been studied in both materials during annealing. During recrystallization the growth of new grains showed quite different characteristics in the two cases. Where shear bands were present these acted as nucleation sites and produced a wide spread of recrystallized grain orientations. The resulting annealing textures were very weak. In the absence of shear bands, nucleation occurs by a remarkably long range bulging process which creates the cube orientation and an intensely sharp annealing texture. Cube oriented regions occur in long bands of highly elongated and well recovered cells which contain long range cumulative micorientations. They are transition bands with structural characteristics ideally suited for nucleation of recrystallization. Shear banding inhibits the cube texture both by creating alternative nuclei and by destroying the microstructural features necessary for cube nucleation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT