28 resultados para recombinant allophycoeyanin
em Aston University Research Archive
Resumo:
Human CD81 (hCD81) protein has been recombinantly produced in the methylotrophic yeast Pichia pastoris. The purified protein, produced at a yield of 1.75 mg/L of culture, was shown to interact with Hepatitis C virus E2 glycoprotein. Immunofluorescent and flow cytometric staining of P. pastoris protoplasts with monoclonal antibodies specific for the second extracellular loop (EC2) of hCD81 confirmed the antigenicity of the recombinant molecule. Full-length hCD81 was solubilized with an array of detergents and subsequently characterized using circular dichroism (CD) and analytical ultracentrifugation. These biophysical techniques confirmed that the protein solution comprises a homogenous species possessing a highly-defined alpha-helical secondary structure. The predicted alpha-helical content of the protein from CD analysis (77.1%) fits remarkably well with what would be expected (75.2%) from knowledge of the protein sequence together with the data from the crystal structure of the second extracellular loop. This study represents the first biophysical characterization of a full-length recombinant tetraspanin, and opens the way for structure-activity analyses of this ubiquitous family of transmembrane proteins.
Resumo:
Background The optimisation and scale-up of process conditions leading to high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences. Typical experiments rely on varying selected parameters through repeated rounds of trial-and-error optimisation. To rationalise this, several groups have recently adopted the 'design of experiments' (DoE) approach frequently used in industry. Studies have focused on parameters such as medium composition, nutrient feed rates and induction of expression in shake flasks or bioreactors, as well as oxygen transfer rates in micro-well plates. In this study we wanted to generate a predictive model that described small-scale screens and to test its scalability to bioreactors. Results Here we demonstrate how the use of a DoE approach in a multi-well mini-bioreactor permitted the rapid establishment of high yielding production phase conditions that could be transferred to a 7 L bioreactor. Using green fluorescent protein secreted from Pichia pastoris, we derived a predictive model of protein yield as a function of the three most commonly-varied process parameters: temperature, pH and the percentage of dissolved oxygen in the culture medium. Importantly, when yield was normalised to culture volume and density, the model was scalable from mL to L working volumes. By increasing pre-induction biomass accumulation, model-predicted yields were further improved. Yield improvement was most significant, however, on varying the fed-batch induction regime to minimise methanol accumulation so that the productivity of the culture increased throughout the whole induction period. These findings suggest the importance of matching the rate of protein production with the host metabolism. Conclusion We demonstrate how a rational, stepwise approach to recombinant protein production screens can reduce process development time.
Resumo:
Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer improved strains, thereby revealing the underlying biological events involved.
Resumo:
Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes.
Resumo:
Foaming during fermentation reduces the efficiency of the process leading to increased costs and reduced productivity. Foaming can be overcome by the use of chemical antifoaming agents, however their influence upon the growth of organisms and protein yield is poorly understood. The objective of this work was to evaluate the effects of different antifoams on recombinant protein production. Antifoam A, Antifoam C, J673A, P2000 and SB2121 were tested at different concentrations for their effect on the growth characteristics of Pichia pastoris producing GFP, EPO and A2aR and the yield of protein in shake flasks over 48 h. All antifoams tested increased the total GFP in the shake flasks compared to controls, at higher concentrations than would normally be used for defoaming purposes. The highest yield was achieved by adding 1 % P2000 which nearly doubled the total yield followed by 1 % SB2121, 1 % J673A, 0.6 % Antifoam A and lastly 0.8 % Antifoam C. The antifoams had a detrimental effect upon the production of EPO and A2aR in shake flasks, suggesting that their effects may be protein specific. The mechanisms of action of the antifoams was investigated and suggested that although the volumetric mass oxygen transfer coefficient (kLa) was influenced by the agents, their effect upon the concentration of dissolved oxygen did not contribute to the changes in growth or recombinant protein yield. Findings in small scale also suggested that antifoams of different compositions such as silicone polymers and alcoxylated fatty acid esters may influence growth characteristics of host organisms and the ability of the cells to secrete recombinant protein, indirectly affecting the protein yield. Upon scale-up, the concentration effects of the antifoams upon GFP yield in bioreactors was reversed, with lower concentrations producing a higher yield. These data suggest that antifoam can affect cells in a multifactorial manner and highlights the importance of screening for optimum antifoam types and concentrations for each bioprocesses.
Resumo:
BACKGROUND: Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. RESULTS: Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. CONCLUSIONS: The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass properties do lead to increased volumetric yields without the need to resort to complex control or cultivation schemes. This is anticipated to be of particular value in the production of challenging targets such as membrane proteins.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Biological processes are subject to the influence of numerous factors and their interactions, which may be non-linear in nature. In a recombinant protein production experiment, understanding the relative importance of these factors, and their influence on the yield and quality of the recombinant protein being produced, is an essential part of its optimisation. In many cases, implementing a design of experiments (DoE) approach has delivered this understanding. This chapter aims to provide the reader with useful pointers in applying a DoE strategy to improve the yields of recombinant yeast cultures.
Resumo:
Having access to suitably stable, functional recombinant protein samples underpins diverse academic and industrial research efforts to understand the workings of the cell in health and disease. Synthesising a protein in recombinant host cells typically allows the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to the native human source cells of many proteins of interest, while also being quick, easy, and cheap to grow and process. Even in these cells the production of some proteins can be plagued by low functional yields. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast cell factories. In this chapter, we provide an overview of the opportunities available to improve yeast as a host system for recombinant protein production.
Resumo:
In the last 15 years, 80% of all recombinant proteins reported in the literature were produced in the bacterium, Escherichia coli, or the yeast, Pichia pastoris. Nonetheless, developing effective general strategies for producing recombinant eukaryotic membrane proteins in these organisms remains a particular challenge. Using a validated screening procedure together with accurate yield quantitation, we therefore wished to establish the critical steps contributing to high yields of recombinant eukaryotic membrane protein in P. pastoris. Whilst the use of fusion partners to generate chimeric constructs and directed mutagenesis have previously been shown to be effective in bacterial hosts, we conclude that this approach is not transferable to yeast. Rather, codon optimization and the preparation and selection of high-yielding P. pastoris clones are effective strategies for maximizing yields of human aquaporins.
Resumo:
Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production.
Resumo:
Pichia pastoris is a widely-used host for recombinant protein production. Initial screening for both suitable clones and optimum culture conditions is typically carried out in multi-well plates. This is followed by up-scaling either to shake-flasks or continuously stirred tank bioreactors. A particular problem in these formats is foaming, which is commonly prevented by the addition of chemical antifoaming agents. Intriguingly, antifoams are often added without prior consideration of their effect on the yeast cells, the protein product or the influence on downstream processes such as protein purification. In this study we characterised, for the first time, the effects of five commonly-used antifoaming agents on the total amount of recombinant green fluorescent protein (GFP) secreted from shake-flask cultures of this industrially-relevant yeast.
Resumo:
The transmembrane domain proteins of the claudin superfamily are the major structural components of cellular tight junctions. One family member, claudin-1, also associates with tetraspanin CD81 as part of a receptor complex that is essential for hepatitis C virus (HCV) infection of the liver. To understand the molecular basis of claudin-1/CD81 association we previously produced and purified milligram quantities of functional, full-length CD81, which binds a soluble form of HCV E2 glycoprotein (sE2). Here we report the production, purification and characterization of claudin-1. Both yeast membrane-bound and detergent-extracted, purified claudin-1 were antigenic and recognized by specific antibodies. Analytical ultracentrifugation demonstrated that extraction with n-octyl-ß-d-glucopyranoside yielded monodispersed, dimeric pools of claudin-1 while extraction with profoldin-8 or n-decylphosphocholine yielded a dynamic mixture of claudin-1 oligomers. Neither form bound sE2 in line with literature expectations, while further functional analysis was hampered by the finding that incorporation of claudin-1 into proteoliposomes rendered them intractable to study. Dynamic light scattering demonstrated that claudin-1 oligomers associate with CD81 in vitro in a defined molar ratio of 1:2 and that complex formation was enhanced by the presence of cholesteryl hemisuccinate. Attempts to assay the complex biologically were limited by our finding that claudin-1 affects the properties of proteoliposomes. We conclude that recombinant, correctly-folded, full-length claudin-1 can be produced in yeast membranes, that it can be extracted in different oligomeric forms that do not bind sE2 and that a dynamic preparation can form a specific complex with CD81 in vitro in the absence of any other cellular components. These findings pave the way for the structural characterization of claudin-1 alone and in complex with CD81.
Resumo:
Scale-up from shake flasks to bioreactors allows for the more reproducible, high-yielding production of recombinant proteins in yeast. The ability to control growth conditions through real-time monitoring facilitates further optimization of the process. The setup of a 3-L stirred-tank bioreactor for such an application is described. © 2012 Springer Science+business Media, LLC.