17 resultados para receptor tyrosine kinases
em Aston University Research Archive
Resumo:
Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.
Resumo:
Aberrant tyrosine protein kinase activity has been implicated in the formation and maintenance of malignancy and so presents a potential target for cancer chemotherapy. Quercetin, a naturally occuring flavonoid, inhibits the tyrosine protein kinase encoded by the Rous sarcoma virus but also exhibits many other effects. Analogues of this compound were synthesised by the acylation of suitable 2-hydroxyacetophenones with appropriately substituted aromatic (or alicyclic) acid chlorides, followed by base catalysed rearrangement to the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones. Acid catalysed ring closure furnished flavones. The majority of the 1-(2-hydroxyphenyl)-3-phenylpropan-1,3-diones were shown by NMR to exist in the enol form. This was supported by the crystal structure of 1-(2-hydroxy-4-methoxyphenyl)-3-phenylpropan-1,3-dione. In contrast, 1.(4,6-dimethoxy-2-hydroxyphenyl)-3-phenylpropan-1,3-dione did not exhibit keto-enol tautomerism in the NMR spectrum and was shown in its crystal structure to assume a twisted conformation. Assessment of the biological activity of the analogues of quercetin was carried out using whole cells and the kinase domain of the tyrosine protein kinase encoded by the Abelson murine leukaemia virus, ptab150 kinase. Single cell suspension cultures and clonogenic potential of murine fibroblasts transformed by the Abelson Murine leukaemia virus (ANN-1 cells) did not indicate the existence of any structure activity relationship required for cytotoxicity or cytostasis. No selective toxicity was apparent when the `normal' parent cell line, (3T3), was used to assess the cytotoxic potential of quercetin. The ICS50 for these compounds were generally in the region of 1-100M. The potential for these compounds to inhibit ptab150 kinase was determined. A definite substitution requirement emerged from these experiments indicating a necessity for substituents in the A ring or in the 3-position of the flavone nucleus. Kinetic data showed these inhibitors to be competitive for ATP.
Resumo:
We have previously identified a phosphorothioate oligonucleotide (PS-ODN) that inhibited epidermal growth factor receptor tyrosine kinase (TK) activity both in cell fractions and in intact A431 cells. Since ODN-based TK inhibitors may have anti-cancer applications and may also help understand the non-antisense mediated effects of PS-ODNs, we have further studied the sequence and chemistry requirements of the parent PS-ODN (sequence: 5′-GGA GGG TCG CAT CGC-3′) as a sequence-dependent TK inhibitor. Sequence deletion and substitution studies revealed that the 5′-terminal GGA GGG hexamer sequence in the parent compound was essential for anti-TK activity in A431 cells. Site-specific substitution of any G with a T in this 5′-terminal motif within the parent compound caused a significant loss in anti-TK activity. The fully PS-modified hexameric motif alone exhibited equipotent activity as the parent 15-mer whereas phosphodiester (PO) or 2′-O-methyl-modified versions of this motif had significantly reduced anti-TK activity. Further, T substitutions within the two 5′-terminal G residues of the hexameric PS-ODN to produce a sequence, TTA GGG, representing the telomeric repeats in human chromosomes, also did not exhibit a significant anti-TK activity. Multiple repeats of the active hexameric motif in PS-ODNs resulted in more potent inhibitors of TK activity than the parent ODN. These results suggested that PS-ODNs, but not PO or 2′-O-methyl modified ODNs, containing the GGA GGG motif can exert potent anti-TK activity which may be desirable in some anti-tumor applications. Additionally, the presence of this previously unidentified motif in antisense PS-ODN constructs may contribute to their biological effects in vitro and in vivo and should be accounted for in the design of the PS-modified antisense ODNs. © 2002 Published by Elsevier Science Inc.
Resumo:
The overexpression of epidermal growth factor receptor (EGFr) has been implicated as a causative factor and a poor prognostic marker in a number of carcinomas. Therefore, strategies that down-regulate EGFr expression may be therapeutically useful. We designed antisense ODNs complementary to the initiation codon region of the EGFr mRNA and evaluated their efficacy in several tumor-derived cells, including the A431 cell line that express amplified levels of EGFr. A 15-mer phosphorothioate (PS) antisense ODN (erbB1AS15) induced a concentration-dependent reduction in proliferation that was accompanied by a change in the morphology of A431 cells into more tightly clustered and discrete colonies. A 15-mer sense (PS) control oligodeoxynucleotide (ODN) and a phosphodiester (PO) version of erbB1AS15 had little or no effect on cell number of morphology, and erbB1AS15 (PS) did not induce these effects in control cell lines expressing lower levels of EGFr. The effects of erbB1AS15 (PS) on A431 cells were not mediated by a true antisense mechanism in that there was no reduction in the level of EGFr mRNA or protein over a 24-hr period, as determined by Northern and Western blotting, respectively. However, autophosphorylation of the receptor was significantly reduced by erbB1AS15 (PS) and not by control ODNs. The results of further studies suggested that this effect was mediated by a direct, dose-dependent inhibition of the EGFr tyrosine kinase enzyme and was not due to impairment of either ligand-binding or receptor dimerization. These data suggest that erbB1AS15 (PS) can inhibit proliferation and alter the morphology of A431 cells by a sequence-selective, but nonantisense mechanism affecting receptor tyrosine kinase activity.
Resumo:
2-Phenylbenzothiazoles have structural similarities to the antioestrogenic 2-phenylindole, zindoxifene and to the oestrogenic isoflavone, genistein which also inhibits tyrosine kinases. Hydroxylated 2-phenylbenzothiazole derivatives were therefore produced and tested for oestrogenic and tyrosine kinase inhibitory activity. Synthesis of methoxy substituted 2-phenylbenzothiazoles was via the Jacobson method, demethylation being effected by boron tribromide at -70oC. Three amino substituted 2-phenylbenzothiazoles were also synthesised and tested for activity. Data is presented for oestrogen receptor binding activity, aromatase inhibitory activity, epidermal growth factor receptor tyrosine kinase (EGFRTK) inhibitory activity and cytotoxicity to ANN-1, 3T3, MCF-7 and WIDR cells. Oestrogen receptor binding affinity (RBA) was shown by five of the nine compounds tested. 2-(4-hydroxy)-6-hydroxybenzo-thiazole was the most active of the benzothiazoles tested (RBA 0.7). This is low but comparable to that of genistein. EGFRTK inhibitory activity was shown by four of the six benzothiazole derivatives tested; activity was comparable to that of genistein. Cytotoxicity assays have shown no selective toxicity of 2-phenylbenzothiazoles to any of the cell lines tested. Toxicity to MCF-7 cells was similar to that for other cell lines despite some compounds showing oestrogen receptor binding capacity. Amino-substituted 2-phenylbenzothiazoles showed selective toxicity towards transformed ANN-1 cells compared to normal 3T3 cells but the mechanism of this selectivity has not been established. Molecular modelling techniques, including CHEM-X, QUANTA and MOPAC were used to compare known ATP-competitive tyrosine kinase inhibitors with a model of ATP built from the crystal structure of the ATP-phosphoglycerate kinase complex. Structural features thought to be important to kinase inhibition were found and used to suggest further 2-phenylbenzothiazole analogues which may have improved activity.
Resumo:
C-reactive protein (CRP) is the prototypic acute phase serum protein in humans. CRP is currently one of the best markers of inflammatory disease and disease activity. One of the keys cells involved in inflammation within chronic inflammatory diseases is the monocyte. Monocytes are able to modulate inflammation through cytokine expression, cytosolic peroxide formation, adhesion molecule expression and subsequent adhesion/migration to sites of inflammation. CRP has been previously shown to bind directly to monocytes through Fc receptors. However this observation is not conclusive and requires further investigation. The effects of incubation of CRP with human primary and monocytic cell lines were examined using monocytic cytokine expression, adhesion molecule expression and adhesion to endothelial cells and intracellular peroxide formation, as end points. Monocytic intracellular signalling events were investigated after interaction of CRP with specific CRP receptors on monocytes. These initial signalling events were examined for their role in modulating monocytic adhesion molecule and cytokine expression. Monocyte recruitment and retention in the vasculature is also influenced by oxidative stress. Therefore the effect of 6 weeks of antioxidant intervention in vivo was examined on monocytic adhesion molecule expression, adhesion to endothelial cells ex vivo and on serum CRP concentrations, pre- and post- supplementation with the antioxidants vitamin C and vitaInin E. In summary, CRP is able to bind FcγRIIa. CRP binding FcγR initiates an intracellular signalling cascade that phosphorylates the non-receptor tyrosine kinase, Syk, associated with intracellular tyrosine activating motifs on the cytoplasmic tail of Fcγ receptors. CRP incubations increased phosphatidyl inositol turnover and Syk phosphorylation ultimately lead to Ca2+ mobilisation in monocytes. CRP mediated Syk phosphorylation in monocytes leads to an increase in CD 11b and IL-6 expression. CRP engagement with monocytes also leads to an increase in peroxide production, which can be inhibited in vitro using the antioxidants α-tocopherol and ascorbic acid. CRP mediated CD 11b expression is not redox regulated by CRP mediated changes in cytosolic peroxides. The FcyRIla polymorphism at codon 131 effects the phenotypic driven changes described in monocytes by CRP, where R/R allotypes have a greater increase in CD11b, in response to CRP, which may be involved in promoting the monocytic inflammatory response. CRP leads to an increase in the expression of pro-inflammatory cytokines, which alters the immune phenotype of circulating monocytes. Vitamin C supplementation reduced monocytic adhesion to endothelial cells, but had no effect on serum levels of CRP. Where long-term antioxidant intervention may provide benefit from the risk of developing vascular inflammatory disease, by reducing monocytic adhesion to the vasculature. In conclusion CRP appears to be much more than just a marker of ongoing inflammation or associated inflammatory disease and disease activity. This data suggests that at pathophysiological concentrations, CRP may be able to directly modulate inflammation through interacting with monocytes and thereby alter the inflammatory response associated with vascular inflammatory diseases.
Resumo:
It is well established that adenosine receptors are involved in cardioprotection and that protein kinase B (PKB) is associated with cell survival. Therefore, in this study we have investigated whether adenosine receptors (A1, A2A and A3) activate PKB by Western blotting and determined the involvement of phosphatidylinositol 3-kinase (PI-3K)/PKB in adenosine-induced preconditioning in cultured newborn rat cardiomyocytes. Adenosine (non-selective agonist), CPA (A1 selective agonist) and Cl-IB-MECA (A(3) selective agonist) all increased PKB phosphorylation in a time- and concentration-dependent manner. The combined maximal response to CPA and Cl-IB-MECA was similar to the increase in PKB phosphorylation induced by adenosine alone. CGS 21680 (A2A selective agonist) did not stimulate an increase in PKB phosphorylation. Adenosine, CPA and Cl-IB-MECA-mediated PKB phosphorylation were inhibited by pertussis toxin (PTX blocks G(i)/G(o)-protein), genistein (tyrosine kinase inhibitor), PP2 (Src tyrosine kinase inhibitor) and by the epidermal growth factor (EGF) receptor tyrosine kinase inhibitor AG 1478. The PI-3K inhibitors wortmannin and LY 294002 blocked A(1) and A(3) receptor-mediated PKB phosphorylation. The role of PI-3K/PKB in adenosine-induced preconditioning was assessed by monitoring Caspase 3 activity and lactate dehydrogenase (LDH) release induced by exposure of cardiomyocytes to 4 h hypoxia (0.5% O2) followed by 18 h reoxygenation (HX4/R). Pre-treatment with wortmannin had no significant effect on the ability of adenosine-induced preconditioning to reduce the release of LDH or Caspase 3 activation following HX4/R. In conclusion, we have shown for the first time that adenosine A1 and A3 receptors trigger increases in PKB phosphorylation in rat cardiomyocytes via a G1/G0-protein and tyrosine kinase-dependent pathway. However, the PI-3K/PKB pathway does not appear to be involved in adenosine-induced cardioprotection by preconditioning Adenosine A1 receptor .
Resumo:
Phosphorylation processes are common post-transductional mechanisms, by which it is possible to modulate a number of metabolic pathways. Proteins are highly sensitive to phosphorylation, which governs many protein-protein interactions. The enzymatic activity of some protein tyrosine-kinases is under tyrosine-phosphorylation control, as well as several transmembrane anion-fluxes and cation exchanges. In addition, phosphorylation reactions are involved in intra and extra-cellular 'cross-talk' processes. Early studies adopted laboratory animals to study these little known phosphorylation processes. The main difficulty encountered with these animal techniques was obtaining sufficient kinase or phosphatase activity suitable for studying the enzymatic process. Large amounts of biological material from organs, such as the liver and spleen were necessary to conduct such work with protein kinases. Subsequent studies revealed the ubiquity and complexity of phosphorylation processes and techniques evolved from early rat studies to the adaptation of more rewarding in vitro models. These involved human erythrocytes, which are a convenient source both for the enzymes, we investigated and for their substrates. This preliminary work facilitated the development of more advanced phosphorylative models that are based on cell lines. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.
Resumo:
The activation of phosphoinositide 3-hydroxykinase (P13K) is currently believed to represent the critical regulatory event which leads to the production of a novel intracellular signal. We have examined the control of this pathway by a number of cell-surface receptors in NG115-401L-C3 neuronal cells. Insulin-like growth factor-I stimulated the accumulation of 3-phosphorylated inositol lipids in intact cells and the appearance of P13K in antiphosphotyrosine-antibody-directed immunoprecipitates prepared from lysed cells, suggesting that P13K had been activated by a mechanism involving a protein tyrosine kinase. In contrast, P13K in these cells was not regulated by a variety of G-protein-coupled receptors, nerve growth factor acting via a low affinity receptor, or receptors for transforming growth factor-beta and interleukin-1. The receptor-specificity of P13K activation in these cells places significant constraints on the possible physiological function(s) of this pathway.
Resumo:
Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)-ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.
Resumo:
Maternal endothelial dysfunction in preeclampsia is associated with increased soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating antagonist of vascular endothelial growth factor and placental growth factor. Angiotensin II (Ang II) is a potent vasoconstrictor that increases concomitant with sFlt-1 during pregnancy. Therefore, we speculated that Ang II may promote the expression of sFlt-1 in pregnancy. Here we report that infusion of Ang II significantly increases circulating levels of sFlt-1 in pregnant mice, thereby demonstrating that Ang II is a regulator of sFlt-1 secretion in vivo. Furthermore, Ang II stimulated sFlt-1 production in a dose- and time-dependent manner from human villous explants and cultured trophoblasts but not from endothelial cells, suggesting that trophoblasts are the primary source of sFlt-1 during pregnancy. As expected, Ang II-induced sFlt-1 secretion resulted in the inhibition of endothelial cell migration and in vitro tube formation. In vitro and in vivo studies with losartan, small interfering RNA specific for calcineurin and FK506 demonstrated that Ang II-mediated sFlt-1 release was via Ang II type 1 receptor activation and calcineurin signaling, respectively. These findings reveal a previously unrecognized regulatory role for Ang II on sFlt-1 expression in murine and human pregnancy and suggest that elevated sFlt-1 levels in preeclampsia may be caused by a dysregulation of the local renin/angiotensin system.
Resumo:
Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.