19 resultados para reasoning biases
em Aston University Research Archive
Resumo:
The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data.
Resumo:
In a series of studies, I investigated the developmental changes in children’s inductive reasoning strategy, methodological manipulations affecting the trajectory, and driving mechanisms behind the development of category induction. I systematically controlled the nature of the stimuli used, and employed a triad paradigm in which perceptual cues were directly pitted against category membership, to explore under which circumstances children used perceptual or category induction. My induction tasks were designed for children aged 3-9 years old using biologically plausible novel items. In Study 1, I tested 264 children. Using a wide age range allowed me to systematically investigate the developmental trajectory of induction. I also created two degrees of perceptual distractor – high and low – and explored whether the degree of perceptual similarity between target and test items altered children’s strategy preference. A further 52 children were tested in Study 2, to examine whether children showing a perceptual-bias were in fact basing their choice on maturation categories. A gradual transition was observed from perceptual to category induction. However, this transition could not be due to the inability to inhibit high perceptual distractors as children of all ages were equally distracted. Children were also not basing their strategy choices on maturation categories. In Study 3, I investigated category structure (featural vs. relational category rules) and domain (natural vs. artefact) on inductive preference. I tested 403 children. Each child was assigned to either the featural or relational condition, and completed both a natural kind and an artefact task. A further 98 children were tested in Study 4, on the effect of using stimuli labels during the tasks. I observed the same gradual transition from perceptual to category induction preference in Studies 3 and 4. This pattern was stable across domains, but children developed a category-bias one year later for relational categories, arguably due to the greater demands on executive function (EF) posed by these stimuli. Children who received labels during the task made significantly more category choices than those who did not receive labels, possibly due to priming effects. Having investigated influences affecting the developmental trajectory, I continued by exploring the driving mechanism behind the development of category induction. In Study 5, I tested 60 children on a battery of EF tasks as well as my induction task. None of the EF tasks were able to predict inductive variance, therefore EF development is unlikely to be the driving factor behind the transition. Finally in Study 6, I divided 252 children into either a comparison group or an intervention group. The intervention group took part in an interactive educational session at Twycross Zoo about animal adaptations. Both groups took part in four induction tasks, two before and two a week after the zoo visits. There was a significant increase in the number of category choices made in the intervention condition after the zoo visit, a result not observed in the comparison condition. This highlights the role of knowledge in supporting the transition from perceptual to category induction. I suggest that EF development may support induction development, but the driving mechanism behind the transition is an accumulation of knowledge, and an appreciation for the importance of category membership.
Resumo:
Terms such as moral and ethical leadership are used widely in theory, yet little systematic research has related a sociomoral dimension to leadership in organizations. This study investigated whether managers' moral reasoning (n=132) was associated with the transformational and transactional leadership behaviors they exhibited as perceived by their subordinates (n=407). Managers completed the Defining Issues Test (J. R. Rest, 1990), whereas their subordinates completed the Multifactor Leadership Questionnaire (B. M. Bass & B. J. Avolio, 1995). Analysis of covariance indicated that managers scoring in the highest group of the moral-reasoning distribution exhibited more transformational leadership behaviors than leaders scoring in the lowest group. As expected, there was no relationship between moral-reasoning group and transactional leadership behaviors. Implications for leadership development are discussed.
Resumo:
Qualitative reasoning has traditionally been applied in the domain of physical systems, where there are well established and understood laws governing the behaviour of each `component' in the system. Such application has shown that it is possible to produce models which can be used for explaining and predicting the behaviour of physical phenomena and also trouble-shooting. The principles underlying the theory ensure that the models are robust and exhibit consistent behaviour under all conditions. This research examines the validity of applying the theory in the financial domain where such laws may not exist or if they do, may not be universally applicable. In particular, it investigates how far these principles and techniques may be applied in the construction of financial analysis models. Because of the inherent differences in the nature of these two domains, it is argued that a different qualitative value system ought to be employed. The dissertation enlarges on the constraints this places on model descriptions and the effect it may have on the power and usefulness of the resulting models. It also describes the implementation of a system that investigates the implications of applying this theory by way of testing it on situations drawn from both text-books and published financial information.
Resumo:
Knitwear design is a creative activity that is hard to automate using the computer. The production of the associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. Our objectives are two-fold: to facilitate the design and to ease the burden of calculations and checks in pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: we describe appropriate methods and show their application.
Resumo:
This thesis presents an investigation into the application of methods of uncertain reasoning to the biological classification of river water quality. Existing biological methods for reporting river water quality are critically evaluated, and the adoption of a discrete biological classification scheme advocated. Reasoning methods for managing uncertainty are explained, in which the Bayesian and Dempster-Shafer calculi are cited as primary numerical schemes. Elicitation of qualitative knowledge on benthic invertebrates is described. The specificity of benthic response to changes in water quality leads to the adoption of a sensor model of data interpretation, in which a reference set of taxa provide probabilistic support for the biological classes. The significance of sensor states, including that of absence, is shown. Novel techniques of directly eliciting the required uncertainty measures are presented. Bayesian and Dempster-Shafer calculi were used to combine the evidence provided by the sensors. The performance of these automatic classifiers was compared with the expert's own discrete classification of sampled sites. Variations of sensor data weighting, combination order and belief representation were examined for their effect on classification performance. The behaviour of the calculi under evidential conflict and alternative combination rules was investigated. Small variations in evidential weight and the inclusion of evidence from sensors absent from a sample improved classification performance of Bayesian belief and support for singleton hypotheses. For simple support, inclusion of absent evidence decreased classification rate. The performance of Dempster-Shafer classification using consonant belief functions was comparable to Bayesian and singleton belief. Recommendations are made for further work in biological classification using uncertain reasoning methods, including the combination of multiple-expert opinion, the use of Bayesian networks, and the integration of classification software within a decision support system for water quality assessment.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
Speed's theory makes two predictions for the development of analogical reasoning. Firstly, young children should not be able to reason analogically due to an undeveloped PFC neural network. Secondly, category knowledge enables the reinforcement of structural features over surface features, and thus the development of sophisticated, analogical, reasoning. We outline existing studies that support these predictions and highlight some critical remaining issues. Specifically, we argue that the development of inhibition must be directly compared alongside the development of reasoning strategies in order to support Speed's account. © 2010 Psychology Press.
Resumo:
A wide range of essential reasoning tasks rely on contradiction identification, a cornerstone of human rationality, communication and debate founded on the inversion of the logical operators "Every" and "Some." A high-density electroencephalographic (EEG) study was performed in 11 normal young adults. The cerebral network involved in the identification of contradiction included the orbito-frontal and anterior-cingulate cortices and the temporo-polar cortices. The event-related dynamic of this network showed an early negative deflection lasting 500 ms after sentence presentation. This was followed by a positive deflection lasting 1.5 s, which was different for the two logical operators. A lesser degree of network activation (either in neuron number or their level of phase locking or both) occurred while processing statements with "Some," suggesting that this was a relatively simpler scenario with one example to be figured out, instead of the many examples or the absence of a counterexample searched for while processing statements with "Every." A self-generated reward system seemed to resonate the recruited circuitry when the contradictory task is successfully completed.
Resumo:
Most empirical work in economic growth assumes either a Cobb–Douglas production function expressed in logs or a log-approximated constant elasticity of substitution specification. Estimates from each are likely biased due to logging the model and the latter can also suffer from approximation bias. We illustrate this with a successful replication of Masanjala and Papagerogiou (The Solow model with CES technology: nonlinearities and parameter heterogeneity, Journal of Applied Econometrics 2004; 19: 171–201) and then estimate both models in levels to avoid these biases. Our estimation in levels gives results in line with conventional wisdom.
Resumo:
The focus of this paper is young people’s participation in the Occupy protest movement that emerged in the early autumn of 2011. Its concern is with the emotional dimensions of this and in particular the significance of emotions to the reasoning of young people who came to commit significant time and energy to the movement. Its starting point is the critique of emotions as narrowly subjective, whereby the passions that events like Occupy arouse are treated as beyond the scope of human reason. The rightful rejection of this reductionist argument has given rise to an interest in under- standings of the emotional content of social and political protest as normatively con- stituted, but this paper seeks a different perspective by arguing that the emotions of Occupy activists can be regarded as a reasonable force. It does so by discussing find- ings from long-term qualitative research with a Local Occupy movement somewhere in England and Wales. Using the arguments of social realists, the paper explores this data to examine why things matter sufficiently for young people to care about them and how the emotional force that this involves constitutes an indispensable source of reason in young activists’ decisions to become involved in Local Occupy.
Resumo:
Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. © 2014 Porcaro et al.
Resumo:
Autonomic systems are required to adapt continually to changing environments and user goals. This process involves the real-Time update of the system's knowledge base, which should therefore be stored in a machine-readable format and automatically checked for consistency. OWL ontologies meet both requirements, as they represent collections of knowl- edge expressed in FIrst order logic, and feature embedded reasoners. To take advantage of these OWL ontology char- acteristics, this PhD project will devise a framework com- prising a theoretical foundation, tools and methods for de- veloping knowledge-centric autonomic systems. Within this framework, the knowledge storage and maintenance roles will be fulfilled by a specialised class of OWL ontologies. ©2014 ACM.
Resumo:
Knitwear design is a creative activity that is hard to automate using the computer. The production of the associated knitting pattern, however, is repetitive, time-consuming and error-prone, calling for automation. Our objectives are two-fold: To facilitate the design and to ease the burden of calculations and checks in pattern production. We conduct a feasibility study for applying case-based reasoning in knitwear design: We describe appropriate methods and show how they can be implemented. © Cranfield University 2009.
Resumo:
Case-based Reasoning's (CBR) origins were stimulated by a desire to understand how people remember information and are in turn reminded of information, and that subsequently it was recognized that people commonly solve problems by remembering how they solved similar problems in the past. Thus CBR became an appropriate way to find out the most suitable solution method for a new problem based on the old methods for the same or even similar problems. The research highlights how to use CBR to aid biologists in finding the best method to cryo preserve algae. The study found CBR could be used successfully to find the similarity percentage between the new algae and old cases in the case base. The prediction result showed approximately 93.75% accuracy, which proves the CBR system can offer appropriate recommendations for most situations. © 2011 IEEE.