6 resultados para range uncertainty

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, geostatistical algorithms are contained within specialist GIS and spatial statistics software. Such packages are often expensive, with relatively complex user interfaces and steep learning curves, and cannot be easily integrated into more complex process chains. In contrast, Service Oriented Architectures (SOAs) promote interoperability and loose coupling within distributed systems, typically using XML (eXtensible Markup Language) and Web services. Web services provide a mechanism for a user to discover and consume a particular process, often as part of a larger process chain, with minimal knowledge of how it works. Wrapping current geostatistical algorithms with a Web service layer would thus increase their accessibility, but raises several complex issues. This paper discusses a solution to providing interoperable, automatic geostatistical processing through the use of Web services, developed in the INTAMAP project (INTeroperability and Automated MAPping). The project builds upon Open Geospatial Consortium standards for describing observations, typically used within sensor webs, and employs Geography Markup Language (GML) to describe the spatial aspect of the problem domain. Thus the interpolation service is extremely flexible, being able to support a range of observation types, and can cope with issues such as change of support and differing error characteristics of sensors (by utilising descriptions of the observation process provided by SensorML). XML is accepted as the de facto standard for describing Web services, due to its expressive capabilities which allow automatic discovery and consumption by ‘naive’ users. Any XML schema employed must therefore be capable of describing every aspect of a service and its processes. However, no schema currently exists that can define the complex uncertainties and modelling choices that are often present within geostatistical analysis. We show a solution to this problem, developing a family of XML schemata to enable the description of a full range of uncertainty types. These types will range from simple statistics, such as the kriging mean and variances, through to a range of probability distributions and non-parametric models, such as realisations from a conditional simulation. By employing these schemata within a Web Processing Service (WPS) we show a prototype moving towards a truly interoperable geostatistical software architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to support the expanding transportation sector. This multi-step process produces hydrocarbon fuels from biomass, the so-called “second generation biofuels” that, unlike first generation biofuels, have the ability to make use of a wider range of biomass feedstock than just plant oils and sugar/starch components. A BTL process based on gasification has yet to be commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. The scope was limited to hydrocarbon products as these can be readily incorporated and integrated into conventional markets and supply chains. The evaluated BTL systems were based on pressurised oxygen gasification of wood biomass or bio-oil and they were characterised by different fuel synthesis processes including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel synthesis technologies were compared in a single, consistent evaluation. The selected process concepts were modelled using the process simulation software IPSEpro to determine mass balances, energy balances and product distributions. For each BTL concept, a cost model was developed in MS Excel to estimate capital, operating and production costs. An uncertainty analysis based on the Monte Carlo statistical method, was also carried out to examine how the uncertainty in the input parameters of the cost model could affect the output (i.e. production cost) of the model. This was the first time that an uncertainty analysis was included in a published techno-economic assessment study of BTL systems. It was found that bio-oil gasification cannot currently compete with solid biomass gasification due to the lower efficiencies and higher costs associated with the additional thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the BTL systems were competitive with conventional fossil fuel plants. However, if government tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was available, transport biofuels could be competitive with conventional fuels. Large scale biofuel production may be possible in the long term through subsidies, fuels price rises and legislation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

eHabitat is a Web Processing Service (WPS) designed to compute the likelihood of finding ecosystems with equal properties. Inputs to the WPS, typically thematic geospatial "layers", can be discovered using standardised catalogues, and the outputs tailored to specific end user needs. Because these layers can range from geophysical data captured through remote sensing to socio-economical indicators, eHabitat is exposed to a broad range of different types and levels of uncertainties. Potentially chained to other services to perform ecological forecasting, for example, eHabitat would be an additional component further propagating uncertainties from a potentially long chain of model services. This integration of complex resources increases the challenges in dealing with uncertainty. For such a system, as envisaged by initiatives such as the "Model Web" from the Group on Earth Observations, to be used for policy or decision making, users must be provided with information on the quality of the outputs since all system components will be subject to uncertainty. UncertWeb will create the Uncertainty-Enabled Model Web by promoting interoperability between data and models with quantified uncertainty, building on existing open, international standards. It is the objective of this paper to illustrate a few key ideas behind UncertWeb using eHabitat to discuss the main types of uncertainties the WPS has to deal with and to present the benefits of the use of the UncertWeb framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a very important issue in any knowledge engineering discipline: the accurate representation and modelling of real life data and its processing by human experts. The work is applied to the GRiST Mental Health Risk Screening Tool for assessing risks associated with mental-health problems. The complexity of risk data and the wide variations in clinicians' expert opinions make it difficult to elicit representations of uncertainty that are an accurate and meaningful consensus. It requires integrating each expert's estimation of a continuous distribution of uncertainty across a range of values. This paper describes an algorithm that generates a consensual distribution at the same time as measuring the consistency of inputs. Hence it provides a measure of the confidence in the particular data item's risk contribution at the input stage and can help give an indication of the quality of subsequent risk predictions. © 2010 IEEE.