52 resultados para random number generation

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random number generation is a central component of modern information technology, with crucial applications in ensuring communications and information security. The development of new physical mechanisms suitable to directly generate random bit sequences is thus a subject of intense current research, with particular interest in alloptical techniques suitable for the generation of data sequences with high bit rate. One such promising technique that has received much recent attention is the chaotic semiconductor laser systems producing high quality random output as a result of the intrinsic nonlinear dynamics of its architecture [1]. Here we propose a novel complementary concept of all-optical technique that might dramatically increase the generation rate of random bits by using simultaneously multiple spectral channels with uncorrelated signals - somewhat similar to use of wave-division-multiplexing in communications. We propose to exploit the intrinsic nonlinear dynamics of extreme spectral broadening and supercontinuum (SC) generation in optical fibre, a process known to be often associated with non-deterministic fluctuations [2]. In this paper, we report proof-of concept results indicating that the fluctuations in highly nonlinear fibre SC generation can potentially be used for random number generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The noise properties of supercontinuum generation continue to be a subject of wide interest within both pure and applied physics. Aside from immediate applications in supercontinuum source development, detailed studies of supercontinuum noise mechanisms have attracted interdisciplinary attention because of links with extreme instabilities in other physical systems, especially the infamous and destructive oceanic rogue waves. But the instabilities inherent in supercontinuum generation can also be interpreted in terms of natural links with the general field of random processes, and this raises new possibilities for applications in areas such as random number generation. In this contribution we will describe recent work where we interpret supercontinuum intensity and phase fluctuations in this way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a numerical study showing how the random intensity and phase fluctuations across the bandwidth of a broadband optical supercontinuum can be interpreted in terms of the random processes of random walks and Lévy flights. We also describe how the intensity fluctuations can be applied to physical random number generation. We conclude that the optical supercontinuum provides a highly versatile means of studying and generating a wide class of random processes at optical wavelengths. © 2012 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we propose a NLSE-based model of power and spectral properties of the random distributed feedback (DFB) fiber laser. The model is based on coupled set of non-linear Schrödinger equations for pump and Stokes waves with the distributed feedback due to Rayleigh scattering. The model considers random backscattering via its average strength, i.e. we assume that the feedback is incoherent. In addition, this allows us to speed up simulations sufficiently (up to several orders of magnitude). We found that the model of the incoherent feedback predicts the smooth and narrow (comparing with the gain spectral profile) generation spectrum in the random DFB fiber laser. The model allows one to optimize the random laser generation spectrum width varying the dispersion and nonlinearity values: we found, that the high dispersion and low nonlinearity results in narrower spectrum that could be interpreted as four-wave mixing between different spectral components in the quasi-mode-less spectrum of the random laser under study could play an important role in the spectrum formation. Note that the physical mechanism of the random DFB fiber laser formation and broadening is not identified yet. We investigate temporal and statistical properties of the random DFB fiber laser dynamics. Interestingly, we found that the intensity statistics is not Gaussian. The intensity auto-correlation function also reveals that correlations do exist. The possibility to optimize the system parameters to enhance the observed intrinsic spectral correlations to further potentially achieved pulsed (mode-locked) operation of the mode-less random distributed feedback fiber laser is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background & aims It has been suggested that retinal lutein may improve visual acuity for images that are illuminated by white light. Our aim was to determine the effect of a lutein and antioxidant dietary supplement on visual function. Methods A prospective, 9- and 18-month, double-masked randomised controlled trial. For the 9-month trial, 46 healthy participants were randomised (using a random number generator) to placebo (n=25) or active (n=21) groups. Twenty-nine of these subjects went on to complete 18 months of supplementation, 15 from the placebo group, and 14 from the active group. The active group supplemented daily with 6mg lutein combined with vitamins and minerals. Outcome measures were distance and near visual acuity, contrast sensitivity, and photostress recovery time. The study had 80% power at the 5% significance level for each outcome measure. Data were collected at baseline, 9, and 18 months. Results There were no statistically significant differences between groups for any of the outcome measures over 9 or 18 months. Conclusion There was no evidence of effect of 9 or 18 months of daily supplementation with a lutein-based nutritional supplement on visual function in this group of people with healthy eyes. ISRCTN78467674.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The aim of the study is to determine the effect of lutein combined with vitamin and mineral supplementation on contrast sensitivity in people with age-related macular disease (ARMD). Design: A prospective, 9-month, double-masked randomized controlled trial. Setting: Aston University, Birmingham, UK and a UK optometric clinical practice. Subjects: Age-related maculopathy (ARM) and atrophic age-related macular degeneration (AMD) participants were randomized (using a random number generator) to either placebo (n = 10) or active (n=15) groups. Three of the placebo group and two of the active group dropped out. Interventions: The active group supplemented daily with 6 mg lutein combined with vitamins and minerals. The outcome measure was contrast sensitivity (CS) measured using the Pelli-Robson chart, for which the study had 80% power at the 5% significance level to detect a change of 0.3log units. Results: The CS score increased by 0.07 ± 0.07 and decreased by 0.02 ± 0.18 log units for the placebo and active groups, respectively. The difference between these values is not statistically significant (z = 0.903, P = 0.376). Conclusion: The results suggest that 6 mg of lutein supplementation in combination with other antioxidants is not beneficial for this group. Further work is required to establish optimum dosage levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. Methods: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. Discussion: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recently, the concept of a random distributed feedback (DFB) lasing in optical fibers has been demonstrated [1], A number of different random DFB fiber lasers has been demonstrated so far including tunable, multiwalength, cascaded generation, generation in different spectral bands etc [2-7]. All systems are based on standard low-loss germanium doped silica core fibres having relatively low Rayleigh scattering coefficient. Thus, the typical length of random DFB fiber lasers is in the range from several kilometres to tens of kilometres to accumulate enough random feedback. Here we demonstrate for the first time to our knowledge the random DFB fiber laser based on a nitrogen doped silica core (N-doped) fiber. The fiber has several times higher Rayleigh scattering coefficient compared to standard telecommunication fibres. Thus, the generation is achieved in 500 meters long fiber only. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider return-to-zero (RZ) pulses with random phase modulation propagating in a nonlinear channel (modelled by the integrable nonlinear Schrödinger equation, NLSE). We suggest two different models for the phase fluctuations of the optical field: (i) Gaussian short-correlated fluctuations and (ii) generalized telegraph process. Using the rectangular-shaped pulse form we demonstrate that the presence of phase fluctuations of both types strongly influences the number of solitons generated in the channel. It is also shown that increasing the correlation time for the random phase fluctuations affects the coherent content of a pulse in a non-trivial way. The result obtained has potential consequences for all-optical processing and design of optical decision elements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and widewavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiwavelength lasing in the random distributed feedback fiber laser is demonstrated by employing an all fiber Lyot filter. Stable multiwavelength generation is obtained, with each line exhibiting subnanometer line-widths. A flat power distribution over multiple lines is obtained, which indicates that the power between lines is redistributed in nonlinear mixing processes. The multiwavelength generation is observed both in first and second Stokes waves. © 2014 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Narrow-band emission of spectral width down to ∼0.05 nm linewidth is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ∼10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. © 2013 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrate a high-efficiency random lasing in a 850 m span of a phosphosilicate fiber. Random distributed feedback owing to the Rayleigh backscattering in the fiber enables narrowband generation with output power of up to 7.3 W at the Stokes wavelength λS = 1308 nm from 11 Wof the pump power at λP = 1115 nm. The laser demonstrates unique generation efficiency. Near the generation threshold, more than 2 W of output power is generated from only 0.5 W of pump power excess over the generation threshold. At high pump power, the quantum conversion efficiency defined as a ratio of generated and pump photons at the laser output exceeds 100%. Itis explained by the fact that every pump photon is converted into the Stokes photon far from the output fiber end, while the Stokes photons have lower attenuation than the pump photons. © 2014 Astro Ltd.