16 resultados para random amplified polymorphic DNA
em Aston University Research Archive
Resumo:
Serratia spp. are an important cause of hospital-acquired infections and outbreaks in high-risk settings. Twenty-one patients were infected or colonized over a nine-month period during 2001-2002 on a neonatal unit. Twenty-two isolates collected were examined for antibiotic susceptibility, β-lactamase production and genotype. Random-amplified polymorphic DNA polymerase chain reaction and pulsed-field gel electrophoresis revealed that two clones were present. The first clone caused invasive clinical infection in four babies, and was subsequently replaced by a non-invasive clone that affected 14 babies. Phenotypically, the two strains also differed in their prodigiosin production; the first strain was non-pigmented whereas the second strain displayed pink-red pigmentation. Clinical features suggested a difference in their pathogenicity. No environmental source was found. The outbreak terminated following enhanced compliance with infection control measures and a change of antibiotic policy. Although S. marcescens continued to be isolated occasionally for another five months of follow-up, these were sporadic isolates with distinct molecular typing patterns. © 2005 The Hospital Infection Society.
Resumo:
The potential source of CVC colonisation was assessed. Isolates of coagulase-negative staphylococci (CoNS) recovered from the skin and CVC components of 3 cardiothoracic surgery patients were characterised by pulsed-field gel electrophoresis (PFGE). The genetic heterogeneity of CoNS isolated from the skin was demonstrated and specific genotypes implicated in catheter colonisation. In addition, phenotypic and genotypic typing techniques were assessed for their ability to characterise strains of CoNS recovered from 33 patients who developed catheter-related bloodstream infection (CR-BSI) on a bone marrow transplant (BMT) unit and Siaphylococcus aureus recovered from 6 cardiothoracic surgery patients with surgical site infection (SSI) following median sternotomy. This epidemiological investigation revealed that common strains of CoNS and 51 aureus where not associated with infection in patients with CR-BSI or sternal SSI during the study period. Furthermore, there was no correlation between phenotypic and genotypic characterisation results. The variable expression of phenotypic traits within strains of staphylococci was evident whilst PFGE and randomly amplified polymorphic DNA (RAPD) were highly discriminatory for the molecular characterisation of S. aureus and CoNS. This was highlighted in 8 stem cell transplant (SCT) patients whereby it was demonstrated that routine identification and characterisation of CoNS by phenotypic techniques may not be adequate for the diagnosis of CR-BSI by current guidelines. The potential of the lipid S ELISA to facilitate the diagnosis of CR-BSI in 38 haematology/SCT patients and sternal SSI in 57 cardiothoracic surgery patients was also assessed. The ELISA proved to be a sensitive test for the rapid serodiagnosis of infection due to staphylococci in immunocompetent patients. The acridine orange leucocyte cytospin test (AOLC) was also evaluated for the rapid diagnosis of CR-BSI in 16 haematology/SCT patients with Hickman CVC in situ. Although the sensitivity of the test was low, it may provide a useful adjunct to conventional methods for the in situ sampling of catheters to predict and diagnose CR-BSI, preventing the unnecessary removal of CVC.
Resumo:
Epidemiological investigations of Clostridium difficile often focus on differences between separate geographical areas. In this investigation, two populations of C. difficile recovered from separate tertiary referral Trusts within the West Midlands, UK, were characterized using both PCR ribotyping and an optimized RAPD (random amplification of polymorphic DNA) protocol. The PCR ribotyping and RAPD methodologies identified differences between the two C. difficile populations, in both the prevalence and the diversity of types identified. The use of PCR ribotyping in conjunction with RAPD further categorized different types within defined PCR ribotypes, identifying different types within the same PCR ribotype and therefore providing a greater discriminatory power than either of the methods when used alone. The differences observed in this study between the two Trusts in the distribution of both RAPD 'type' and PCR ribotype demonstrate the diversity that is present amongst isolates of C. difficile within a relatively small geographical area and warrants a need for further investigation into the local epidemiology of C. difficile.
Resumo:
Random amplification of polymorphic DNA (RAPD) was evaluated as a genotypic method for typing clinical strains of Propionibacterium acnes. RAPD can suffer from problems of reproducibility if parameters are not standardised. In this study the reaction conditions were optimised by adjusting template DNA concentration and buffer constituents. All isolates were typeable using the optimised RAPD protocol which was found to be highly discriminatory (Simpson's diversity index, 0.98) and reproducible. Typing of P. acnes by optimised RAPD is an invaluable tool for the epidemiological investigation of P. acnes for which no other widely accepted method currently exists. © 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Clostridium difficile is at present one of the most common nosocomial infections in the developed world. Hypervirulent strains (PCR ribotype 027) of C. difficile which produce enhanced levels of toxins have also been associated with other characteristics such as a greater rate of sporulation and resistance to fluoroquinolones. Infection due to C. difficile PCR ribotype 027 has also been associated with greater rates of morbidity and mortality. The aim of this thesis was to investigate both the phenotypic and genotypic characteristics of two populations of toxigenic clinical isolates of C. difficile which were recovered from two separate hospital trusts within the UK. Phenotypic characterisation of the isolates was undertaken using analytical profile indexes (APIs), minimum inhibitory concentrations(MICs) and S-layer protein typing. In addition to this, isolates were also investigated for the production of a range of extracellular enzymes as potential virulence factors. Genotypic characterisation was performed using a random amplification of polymorphic DNA(RAPD) PCR protocol which was fully optimised in this study, and the gold standard method, PCR ribotyping. The discriminatory power of both methods was compared and the similarity between the different isolates also analysed. Associations between the phenotypic and genotypic characteristics and the recovery location of the isolate were then investigated. Extracellular enzyme production and API testing revealed little variation between the isolates; with S-layer typing demonstrating low discrimination. Minimum inhibitory concentrations did not identify any resistance towards either vancomycin or metronidazole; there were however significant differences in the distribution of antibiogram profiles of isolates recovered from the two different trusts. The RAPD PCR protocol was successfully optimised and alongside PCR ribotyping, effectively typed all of the clinical isolates and also identified differences in the number of types defined between the two locations. Both PCR ribotyping and RAPD demonstrated similar discriminatory power; however, the two genotyping methods did not generate amplicons that mapped directly onto each other and therefore clearly characterised isolates based on different genomic markers. The RAPD protocol also identified different subtypes within PCR ribotypes, therefore demonstrating that all isolates defined as a particular PCR ribotype were not the same strain. No associations could be demonstrated between the phenotypic and genotypic characteristics observed; however, the location from which an isolate was recovered did appear to influence antibiotic resistance and genotypic characteristics. The phenotypic and genotypic characteristics observed amongst the C. difficile isolates in this study, may provide a basis for the identification of further targets which may be potentially incorporated into future methods for the characterisation of C. difficile isolates.
Resumo:
Propionibacterium acnes forms part of the normal flora of the skin, oral cavity, large intestine and the external ear. Historically, P. acnes is considered to be of low virulence; however, in recent years it has been found as the aetiological agent in various pathologies including acne vulgaris, endophthalmitis, endocarditis, osteomyelitis, sarcoidosis, prosthetic hip infections and sciatica. It currently remains unclear why this normally harmless commensal can cause infection and contribute to a number of clinically significant conditions. This thesis has sought to investigate the phenotypic, genetic and antigenic properties of P.acnes strains isolated from sciatica patients undergoing microdiscectomy, normal skin, blood cultures, prosthetic hips and acne lesions. Isolates' phenotype was examined by determining their biotype by analytical profile index, antimicrobial susceptibility, virulence factor expression and serotype. A molecular typing method for P.acnes was developed using random amplification of polymorphic DNA (RAPD). Patient serum was used to screen P.acnes strains for antigens expressed in vivo and the chemical composition determined. The serodiagnostic potential and inflammatory properties of identified antigens were assessed. The optimised and reproducible RAPD protocol classified strains into three major clusters and was found to distinguish between the serotypes I and II for a large number of clinical isolates. Molecular typing by RAPD also enabled the identification of a genotype that did not react with the type I or II monoclonal antibodies and these strains may therefore constitute a previously undiscovered subspecies of P.acnes with a genetic background different from the type I and II serotypes. A major cell associated antigen produced by all strains was identified and characterised. A serological assay based on the antigen was used to measure IgG and IgM levels in serum from patients with acne, sciatica and controls. No difference in levels of antibodies was detected. Inflammatory properties of the antigen were measured by exposing murine macrophage-like cells and measuring the release of nitric oxide and tumour necrosis factor-alpha (TNF-α). Only TNF-α was elicited in response to the antigen. The phenotypic, genotypic and antigenic properties of this organism may provide a basis for future studies on P.acnes virulence and provide an insight into its mechanisms of pathogenesis.
Resumo:
We have developed a novel multilocus sequence typing (MLST) scheme and database (http://pubmlst.org/pacnes/) for Propionibacterium acnes based on the analysis of seven core housekeeping genes. The scheme, which was validated against previously described antibody, single locus and random amplification of polymorphic DNA typing methods, displayed excellent resolution and differentiated 123 isolates into 37 sequence types (STs). An overall clonal population structure was detected with six eBURST groups representing the major clades I, II and III, along with two singletons. Two highly successful and global clonal lineages, ST6 (type IA) and ST10 (type IB1), representing 64?% of this current MLST isolate collection were identified. The ST6 clone and closely related single locus variants, which comprise a large clonal complex CC6, dominated isolates from patients with acne, and were also significantly associated with ophthalmic infections. Our data therefore support an association between acne and P. acnes strains from the type IA cluster and highlight the role of a widely disseminated clonal genotype in this condition. Characterization of type I cell surface-associated antigens that are not detected in ST10 or strains of type II and III identified two dermatan-sulphate-binding proteins with putative phase/antigenic variation signatures. We propose that the expression of these proteins by type IA organisms contributes to their role in the pathophysiology of acne and helps explain the recurrent nature of the disease. The MLST scheme and database described in this study should provide a valuable platform for future epidemiological and evolutionary studies of P. acnes.
Resumo:
Objectives: A rapid random amplification of polymorphic DNA (RAPD) technique was developed to distinguish between strains of coagulase-negative staphylococci (CoNS) involved in central venous catheter (CVC)-related bloodstream infection. Its performance was compared with that of pulsed-field gel electrophoresis (PFGE). Methods: Patients at the University Hospital Birmingham NHS Foundation Trust, U.K. who underwent stem cell transplantation and were diagnosed with CVC-related bloodstream infection due to CoNS whilst on the bone marrow transplant unit were studied. Isolates of CoNS were genotyped by PFGE and RAPD, the latter employing a single primer and a simple DNA extraction method. Results: Both RAPD and PFGE were highly discriminatory (Simpson's diversity index, 0.96 and 0.99, respectively). Within the 49 isolates obtained from blood cultures of 33 patients, 20 distinct strains were identified by PFGE and 25 by RAPD. Of the 25 strains identified by RAPD, nine clusters of CoNS contained isolates from multiple patients, suggesting limited nosocomial spread. However, there was no significant association between time of inpatient stay and infection due to any particular strain. Conclusion: The RAPD technique presented allows CoNS strains to be genotyped with high discrimination within 4 h, facilitating real-time epidemiological investigations. In this study, no single strain of CoNS was associated with a significant number of CVC-related bloodstream infections. © 2005 Published by Elsevier Ltd on behalf of the British Infection Society.
Resumo:
AIMS: To investigate multiple techniques for the preparation of solid tissue for polymerase chain reaction (PCR) analysis, and to identify the most simple techniques for routine use in the laboratory. METHODS: Techniques for the preparation of arterial tissue samples including homogenisation, ultrafiltration, and treatments involving proteinase K, Gene Clean, lectin, and Fe3+ specific chelators were evaluated using the PCR to amplify both Chlamydia pneumoniae and human DNA. RESULTS: Treatment with either Gene-Clean or lectin and the Fe3+ specific chelator deferoxamine mesylate removed PCR inhibitors from tissue homogenates. Homogenisation followed by GeneClean treatment resulted in the amplification of C pneumoniae DNA from within a section of atherosclerotic carotid artery, implying that C pneumoniae elementary bodies had been disrupted. In eight further clinical samples from patients not known to have C pneumoniae infection, human DNA was amplified and no cross contamination was observed between samples. These samples contained no evidence of C pneumoniae by PCR. CONCLUSIONS: A simple preparation of solid tissue for PCR analysis, involving homogenisation followed by GeneClean treatment has been developed, and is effective for the amplification of both C pneumoniae and human DNA.
Resumo:
The concept of random lasers making use of multiple scattering in amplifying disordered media to generate coherent light has attracted a great deal of attention in recent years. Here, we demonstrate a fibre laser with a mirrorless open cavity that operates via Rayleigh scattering, amplified through the Raman effect. The fibre waveguide geometry provides transverse confinement and effectively one-dimensional random distributed feedback, leading to the generation of a stationary near-Gaussian beam with a narrow spectrum, and with efficiency and performance comparable to regular lasers. Rayleigh scattering due to inhomogeneities within the glass structure of the fibre is extremely weak, making the operation and properties of the proposed random distributed feedback lasers profoundly different from those of both traditional random lasers and conventional fibre lasers.
Resumo:
Randomisation of DNA using conventional methodology requires an excess of genes to be cloned, since with randomised codons NNN or NNG/T 64 genes or 32 genes must be cloned to encode 20 amino acids respectively. Thus, as the number of randomised codons increases, the number of genes required to encode a full set of proteins increases exponentially. Various methods have been developed that address the problems associated with excess of genes that occurs due to the degeneracy of the genetic code. These range from chemical methodologies to biological methods. These all involve the replacement, insertion or deletion of codon(s) rather than individual nucleotides. The biological methods are however limited to random insertion/deletion or replacement. Recent work by Hughes et al., (2003) has randomised three binding residues of a zinc finger gene. The drawback with this is the fact that consecutive codons cannot undergo saturation mutagenesis. This thesis describes the development of a method of saturation mutagenesis that can be used to randomise any number of consecutive codons in a DNA strand. The method makes use of “MAX” oligonucleotides coding for each of the 20 amino acids that are ligated to a conserved sequence of DNA using T4 DNA ligase. The “MAX” oligonucleotides were synthesised in such a way, with an MlyI restriction site, that restriction of the oligonucleotides occurred after the three nucleotides coding for the amino acids. This use of the MlyI site and the restrict, purify, ligate and amplify method allows the insertion of “MAX” codons at any position in the DNA. This methodology reduces the number of clones that are required to produce a representative library and has been demonstrated to be effective to 7 amino acid positions.
Resumo:
The concept of random lasers exploiting multiple scattering of photons in an amplifying disordered medium in order to generate coherent light without a traditional laser resonator has attracted a great deal of attention in recent years. This research area lies at the interface of the fundamental theory of disordered systems and laser science. The idea was originally proposed in the context of astrophysics in the 1960s by V.S. Letokhov, who studied scattering with "negative absorption" of the interstellar molecular clouds. Research on random lasers has since developed into a mature experimental and theoretical field. A simple design of such lasers would be promising for potential applications. However, in traditional random lasers the properties of the output radiation are typically characterized by complex features in the spatial, spectral and time domains, making them less attractive than standard laser systems in terms of practical applications. Recently, an interesting and novel type of one-dimensional random laser that operates in a conventional telecommunication fibre without any pre-designed resonator mirrors-random distributed feedback fibre laser-was demonstrated. The positive feedback required for laser generation in random fibre lasers is provided by the Rayleigh scattering from the inhomogeneities of the refractive index that are naturally present in silica glass. In the proposed laser concept, the randomly backscattered light is amplified through the Raman effect, providing distributed gain over distances up to 100km. Although an effective reflection due to the Rayleigh scattering is extremely small (~0.1%), the lasing threshold may be exceeded when a sufficiently large distributed Raman gain is provided. Such a random distributed feedback fibre laser has a number of interesting and attractive features. The fibre waveguide geometry provides transverse confinement, and effectively one-dimensional random distributed feedback leads to the generation of a stationary near-Gaussian beam with a narrow spectrum. A random distributed feedback fibre laser has efficiency and performance that are comparable to and even exceed those of similar conventional fibre lasers. The key features of the generated radiation of random distributed feedback fibre lasers include: a stationary narrow-band continuous modeless spectrum that is free of mode competition, nonlinear power broadening, and an output beam with a Gaussian profile in the fundamental transverse mode (generated both in single mode and multi-mode fibres).This review presents the current status of research in the field of random fibre lasers and shows their potential and perspectives. We start with an introductory overview of conventional distributed feedback lasers and traditional random lasers to set the stage for discussion of random fibre lasers. We then present a theoretical analysis and experimental studies of various random fibre laser configurations, including widely tunable, multi-wavelength, narrow-band generation, and random fibre lasers operating in different spectral bands in the 1-1.6μm range. Then we discuss existing and future applications of random fibre lasers, including telecommunication and distributed long reach sensor systems. A theoretical description of random lasers is very challenging and is strongly linked with the theory of disordered systems and kinetic theory. We outline two key models governing the generation of random fibre lasers: the average power balance model and the nonlinear Schrödinger equation based model. Recently invented random distributed feedback fibre lasers represent a new and exciting field of research that brings together such diverse areas of science as laser physics, the theory of disordered systems, fibre optics and nonlinear science. Stable random generation in optical fibre opens up new possibilities for research on wave transport and localization in disordered media. We hope that this review will provide background information for research in various fields and will stimulate cross-disciplinary collaborations on random fibre lasers. © 2014 Elsevier B.V.
Resumo:
The emerging science and applications of ultra-long random fibre lasers will be overviewed. The lasers with cavity length up to several hundred km exploit random distributed feedback provided by Rayleigh scattering amplified through Raman effect. © 2014 OSA.
Resumo:
I will overview our recent results on ultra-long lasers and will discuss the concept of a fiber laser with an open cavity that operates using random distributed feedback provided by Rayleigh scattering amplified through the Raman effect. © 2011 Optical Society of America.
Resumo:
We demonstrate lasing based on a random distributed feedback due to the Raman amplified Rayleigh backscattering in different types of cavities with and without conventional point-action reflectors. Quasistationary generation of a narrowband spectrum is achieved despite the random nature of the feedback. The generated spectrum is localized at the reflection or gain spectral maxima in schemes with and without point reflectors, respectively. The length limit for a conventional cavity and the minimal pump power required for the lasing based purely on a random distributed feedback are determined. © 2010 The American Physical Society.