28 resultados para radius of curvature
em Aston University Research Archive
Resumo:
Ophthalmophakometric measurements of ocular surface radius of curvature and alignment were evaluated on physical model eyes encompassing a wide range of human ocular dimensions. The results indicated that defocus errors arising from imperfections in the ophthalmophakometer camera telecentricity and light source collimation were smaller than experimental errors. Reasonable estimates emerged for anterior lens surface radius of curvature (accuracy: 0.02–0.10 mm; precision 0.05–0.09 mm), posterior lens surface radius of curvature (accuracy: 0.10–0.55 mm; precision 0.06–0.20 mm), eye rotation (accuracy: 0.00–0.32°; precision 0.06–0.25°), lens tilt (accuracy: 0.00–0.33°; precision 0.05–0.98°) and lens decentration (accuracy: 0.00–0.07 mm; precision 0.00–0.07 mm).
Resumo:
Measurements (autokeratometry, A-scan ultrasonography and video ophthalmophakometry) of ocular surface radii, axial separations and alignment were made in the horizontal meridian of nine emmetropes (aged 20-38 years) with relaxed (cycloplegia) and active accommodation (mean ± 95% confidence interval: 3.7 ± 1.1 D). The anterior chamber depth (-1.5 ± 0.3 D) and both crystalline lens surfaces (front 3.1 ± 0.8 D; rear 2.1 ± 0.6 D) contributed to dioptric vergence changes that accompany accommodation. Accommodation did not alter ocular surface alignment. Ocular misalignment in relaxed eyes is mainly because of eye rotation (5.7 ± 1.6° temporally) with small amounts of lens tilt (0.2 ± 0.8° temporally) and decentration (0.1 ± 0.1 mm nasally) but these results must be viewed with caution as we did not account for corneal asymmetry. Comparison of calculated and empirically derived coefficients (upon which ocular surface alignment calculations depend) revealed that negligible inherent errors arose from neglect of ocular surface asphericity, lens gradient refractive index properties, surface astigmatism, effects of pupil size and centration, assumed eye rotation axis position and use of linear equations for analysing Purkinje image shifts. © 2004 The College of Optometrists.
Resumo:
Purpose: To describe the methodology, sampling strategy and preliminary results for the Aston Eye Study (AES), a cross-sectional study to determine the prevalence of refractive error and its associated ocular biometry in a large multi-racial sample of school children from the metropolitan area of Birmingham, England. Methods: A target sample of 1700 children aged 6–7 years and 1200 aged 12–13 years is being selected from Birmingham schools selected randomly with stratification by area deprivation index (a measure of socio-economic status). Schools with pupils predominantly (>70%) from a single race are excluded. Sample size calculations account for the likely participation rate and the clustering of individuals within schools. Procedures involve standardised protocols to allow for comparison with international population-based data. Visual acuity, non-contact ocular biometry (axial length, corneal radius of curvature and anterior chamber depth) and cycloplegic autorefraction are measured in both eyes. Distance and near oculomotor balance, height and weight are also assessed. Questionnaires for parents and older children will allow the influence of environmental factors on refractive error to be examined. Results: Recruitment and data collection are ongoing (currently N = 655). Preliminary cross-sectional data on 213 South Asian, 44 black African Caribbean and 70 white European children aged 6–7 years and 114 South Asian, 40 black African Caribbean and 115 white European children aged 12–13 years found myopia prevalence of 9.4% and 29.4% for the two age groups respectively. A more negative mean spherical equivalent refraction (SER) was observed in older children (-0.21 D vs +0.87 D). Ethnic differences in myopia prevalence are emerging with South Asian children having higher levels than white European children 36.8% vs 18.6% (for the older children). Axial length, corneal radius of curvature and anterior chamber depth were normally distributed, while SER was leptokurtic (p < 0.001) with a slight negative skew. Conclusions: The AES will allow ethnic differences in the ocular characteristics of children from a large metropolitan area of the UK to be examined. The findings to date indicate the emergence of higher levels of myopia by early adolescence in second and third generation British South Asians, compared to white European children. The continuation of the AES will allow the early determinants of these ethnic differences to be studied.
Resumo:
The study investigated the central and peripheral corneal characteristics of groups of subjects from 20 to 90 years of age to assist the understanding of ageing changes in the cornea, and to see whether relationships between ocular parameters were revealed. After age 45 the corneal horizontal radius of curvature gradually decreased with age. This trend was shown by the Aston University subjects (group B). The effect was very significant for the hospital patients undergoing biometry before cataract extraction operation (group D). Vertical radius of curvature showed a slight decrease with age after age 45, but similar to corneal eccentricity, this showed no significant age effect. Corneal astigmatism progressed from with the rule towards against the rule, particularly after age 60. The shift seemed mainly due to the decreasing horizontal corneal curvature. In biometry no significant age relation was found for axial length, but a significant relation was found between curvature and axial length in the larger group D. Lens thickness showed a very significant relation to age and to axial length, but no significant relation to corneal curvature. Anterior chamber depth showed a very significant relation to age, lens thickness and axial length, but no significant relation to corneal curvature. A significant age effect was found for corneal thickness decreasing with age for the central, nasal and temporal regions of the right eye. Analysis of the biometry results indicated the influence of two major factors. Firstly, the natural growth of the eye in youth, leading to greater values of axial length, radius of corneal curvature, lens thickness and anterior chamber depth. Secondly, the typical ageing changes where the increasing lens thickness caused a reduction in anterior chamber depth. The decrease in corneal thickness with age shown in some corneal regions may be a sign of ageing changes in the tissue proteins and hydration balance.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.
Resumo:
We report the first demonstration of the simultaneous measurement of strain and curvature, with temperature compensation, using a single superstructure fibre Bragg grating (SFBG). The SFBG exhibits the properties of both the fibre Bragg grating (FBG) and the long period fibre grating (LPG) such that its spectral response facilitates strain measurement from the wavelength shift of the FBG-like characteristic, and independent measurement of curvature from the LPG-like mode-splitting characteristic. The dependence of the LPG mode-splitting on the mode order has also been investigated and utilised for the measurement of very small curvatures.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm·m for curvature and 2.2×10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
Changes in the radial growth rate (RGR mm/yr) through life were studied in thalli of the foliose lichen Parmelia conspersa by two methods: (1) a cross-sectional study (Study A) in which the RGR was measured in 60 thalli from 0.2 to 13 cm in diameter, and (2) by radial growth measurements over 4.5 years of fragments, consisting of a single major lobe, which were removed from large thalli and glued to pieces of slate (Study B). Both studies suggested there was a phase of increasing RGR in small thalli followed by a more constant phase, the latter beginning at approximately a thallus radius of 6-8 mm. However, in Study B significantly increased RGR was observed during the second 6-month growth period. This phase of growth was more likely to be due to an increase in lobe width than to an effect of climate. In addition, a lobe in a large thallus with both adjacent lobes removed significantly increased in width over 1 year compared with control lobes. These results suggest that (1) mean lobe width in a thallus may be determined by the intensity of marginal competition between adjacent lobes, and (2) changes in lobe width during the life of a lichen thallus may be a factor determining the establishment of the linear phase of growth in foliose lichens. © 1992.
Resumo:
The conformational characteristics of poly(dimethylsilmethylene), poly(dimethylsilethene), poly(dimethylsilethane) and a related material, poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane), have been investigated using the method of molecular mechanics. In this method, a quantitative analysis of the factors affecting the nature and magnitude of the bond rotation potentials governing their conformational behaviour has been undertaken. Along with their structural data, the results obtained were employed to calculate a variety of conformationally-dependent properties for these polymers, including the characteristic ratio, the dipole moment ratio and the mean-square radius of gyration. In addition, the dielectric relaxation behaviour of two samples of poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) with molar masses Mw = 28000 and Mw = 46000 respectively, have been studied as a function of temperature (179K-205K) and frequency (100-105Hz). Activation energies for the α-relaxation process and Davidson-Cole empirical distribution factors have been calculated.
Resumo:
Long period gratings (LPGs) were written into a D-shaped single-mode fiber. These LPGs were subjected to a range of curvatures, and it was found that as curvature increased, there was increasingly strong coupling to certain higher order cladding modes without the usual splitting of the LPGs stopbands. A bend-induced stopband yielded a spectral sensitivity of 12.55 nm · m for curvature and 2.2 × 10-2 nm°C-1 for temperature. It was also found that the wavelength separation between adjacent bend-induced stopbands varied linearly as a function of curvature. Blue and red wavelength shifts of the stopbands were observed as the sensor was rotated around a fixed axis for a given curvature; thus, in principle, this sensor could be used to obtain bending and orientational information. The behavior of the stopbands was successfully modeled using a finite element approach.
Resumo:
The extent to which the surface parameters of Progressive Addition Lenses (PALs) affect successful patient tolerance was investigated. Several optico-physical evaluation techniques were employed, including a newly constructed surface reflection device which was shown to be of value for assessing semi-finished PAL blanks. Detailed physical analysis was undertaken using a computer-controlled focimeter and from these data, iso-cylindrical and mean spherical plots were produced for each PAL studied. Base curve power was shown to have little impact upon the distribution of PAL astigmatism. A power increase in reading addition primarily caused a lengthening and narrowing of the lens progression channel. Empirical measurements also indicated a marginal steepening of the progression power gradient with an increase in reading addition power. A sample of the PAL wearing population were studied using patient records and questionnaire analysis (90% were returned). This subjective analysis revealed the reading portion to be the most troublesome lens zone and showed that patients with high astigmatism (> 2.00D) adapt more readily to PALs than those with spherical or low cylindrical (2.00D) corrections. The psychophysical features of PALs were then investigated. Both grafting visual acuity (VA) and contrast sensitivity (CS) were shown to be reduced with an increase in eccentricity from the central umbilical line. Two sample populations (N= 20) of successful and unsuccessful PAL wearers were assessed for differences in their visual performance and their adaptation to optically induced distortion. The possibility of dispensing errors being the cause of poor patient tolerance amongst the unsuccessful wearer group was investigated and discounted. The contrast sensitivity of the successful group was significantly greater than that of the unsuccessful group. No differences in adaptation to or detection of curvature distortion were evinced between these presbyopic groups.
Resumo:
Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique. © 2014 SPIE.
Resumo:
We study the dynamics of a growing crystalline facet where the growth mechanism is controlled by the geometry of the local curvature. A continuum model, in (2+1) dimensions, is developed in analogy with the Kardar-Parisi-Zhang (KPZ) model is considered for the purpose. Following standard coarse graining procedures, it is shown that in the large time, long distance limit, the continuum model predicts a curvature independent KPZ phase, thereby suppressing all explicit effects of curvature and local pinning in the system, in the "perturbative" limit. A direct numerical integration of this growth equation, in 1+1 dimensions, supports this observation below a critical parametric range, above which generic instabilities, in the form of isolated pillared structures lead to deviations from standard scaling behaviour. Possibilities of controlling this instability by introducing statistically "irrelevant" (in the sense of renormalisation groups) higher ordered nonlinearities have also been discussed.
Resumo:
This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.