6 resultados para radiofrequency quadrupole
em Aston University Research Archive
Resumo:
An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.
Resumo:
Protein oxidation is thought to contribute to a number of inflammatory diseases, hence the development of sensitive and specific analytical techniques to detect oxidative PTMs (oxPTMs) in biological samples is highly desirable. Precursor ion scanning for fragment ions of oxidized amino acid residues was investigated as a label-free MS approach to mapping specific oxPTMs in a complex mixture of proteins. Using HOCl-oxidized lysozyme as a model system, it was found that the immonium ions of oxidized tyrosine and tryptophan formed in MS(2) analysis could not be used as diagnostic ions, owing to the occurrence of isobaric fragment ions from unmodified peptides. Using a double quadrupole linear ion trap mass spectrometer, precursor ion scanning was combined with detection of MS(3) fragment ions from the immonium ions and collisionally-activated decomposition peptide sequencing to achieve selectivity for the oxPTMs. For chlorotyrosine, the immonium ion at 170.1 m/z fragmented to yield diagnostic ions at 153.1, 134.1, and 125.1 m/z, and the hydroxytyrosine immonium ion at 152.1 m/z gave diagnostic ions at 135.1 and 107.1 m/z. Selective MS(3) fragment ions were also identified for 2-hydroxytryptophan and 5-hydroxytryptophan. The method was used successfully to map these oxPTMs in a mixture of nine proteins that had been treated with HOCl, thereby demonstrating its potential for application to complex biological samples.
Resumo:
Protein modifications, including oxidative modifications, glycosylations, and oxidized lipid-protein adducts, are becoming increasingly important as biomarkers and in understanding disease etiology. There has been a great deal of interest in mapping these on Apo B100 from low density lipoprotein (LDL). We have used extracted ion chromatograms of product ions generated using a very narrow mass window from high-resolution tandem mass spectrometric data collected on a rapid scanning quadrupole time-of-flight (QTOF) instrument, to selectively and sensitively detect modified peptides and identify the site and nature of a number of protein modifications in parallel. We have demonstrated the utility of this method by characterizing for the first time oxidized phospholipid adducts to LDL and human serum albumin and for the detection of glycosylation and kynurenin formation from the oxidation of tryptophan residues in LDL. © 2013 American Chemical Society.
Resumo:
We observed an anomaly in the human electroencephalogram (EEG) associated with exposure to terrestrial trunked radio (TETRA) Radiofrequency Fields (RF). Here, we characterize the time and frequency components of the anomaly and demonstrate that it is an artefact caused by TETRA RF interfering with the EEG recording equipment and not by any direct or indirect effect on the brain.
Resumo:
Background: Ketorolac, a potent nonsteroidal anti-inflammatory drug used for pain control in children, exists as a racemate of inactive R (+) and active S (-) enantiomers. Aim: To develop a microsampling assay for the enantioselective analysis of ketorolac in children. Methods: Ketorolac enantiomers were extracted from 50 µl of plasma by liquid–liquid extraction and separated on a ChiralPak AD-RH. Detection was by a TSQ quantum triple quadrupole mass spectrometer with an electrospray ionisation source operating in a positive ion mode. Five children (age 13.8 (1.6) years, weight 52.7 (7.2) kg), were administered intravenous ketorolac 0.5 mg/kg (maximum 10 mg) and blood samples were taken at 0, 0.25, 0.5, 1, 2, 4, 6, 8 and 12 h post administration. CL, VD and t1/2 were calculated based on non-compartmental methods. Results: The standard curves for R (+) and S (-) ketorolac were linear in the range 0–2000 ng/ml. The LLOQs of the method were 0.15 ng on column and 0.31 ng on column for R (+) and S (-) ketorolac, respectively. The median (range) VD and CL of R (+) and S (-) ketorolac were 0.12 l/kg (0.07–0.17), 0.017 l/h/kg (0.12–0.29) and 0.17 (0.09–0.31) l/kg, 0.049 (0.02–0.1) l/h/kg, p = 0.043), respectively. The median (range) elimination half-life (t1/2) of the R (+) and S (-) ketorolac was 5.0 h (2.5–5.8) and 3.1 h (1.8–4.4), p = 0.043), respectively. Conclusion: The development of a simple, rapid and reliable ketorolac assay suitable for paediatric PK studies is reported. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.