3 resultados para radiation protection
em Aston University Research Archive
Resumo:
Ionising radiation hazards are perhaps the most documented and regulated occupational and environmental hazard. In the radiological protection field a single expert advisory organisation has had an unusually large influence on the international standard setting process. This is the International Commission on Radiological Protection (ICRP). Two common, and opposing views, exist over the formulation of protection recommendations by the ICRP. The first, and most widely accepted, is that its recommendations are scientifically determined. The second view, is that its recommendations are politically or socially determined. Neither of these analyses adequately accounts for the complex process in which protection recommendations are formulated. A third view, provided by studies of the origins of scientific controversy, suggests that both science and social factors are important in the assessment and limitation of risk. The aim of this thesis is not simply to examine the origin of controversy. Issues of equal, if not more, importance are the resolution of controversy, the formation of consensus and the maintenance of expert authority and influence. These issues form the central focus of this thesis. The aim is to assess the process through which the ICRP formulates its radiological protection recommendations and comment on the extent that these are influenced by the affiliations of its members. This thesis concludes that the ICRP's recommendations have been shaped by a complex relationship of scientific and social considerations, in which a socio-technical commitment to nuclear energy has played a key role. The Commission has responded to new scientific data by making complex changes to its philosophy and methods of describing risk. Where reductions in numerical limits have been applied they have been accompanied by practical measures designed to limit the impact of the change and provide continuity with the old limits and flexibility in the application of the new recommendations.
Resumo:
While knowledge about standardization of skin protection against ultraviolet radiation (UVR) has progressed over the past few decades, there is no uniform and generally accepted standardized measurement for UV eye protection. The literature provides solid evidence that UV can induce considerable damage to structures of the eye. As well as damaging the eyelids and periorbital skin, chronic UV exposure may also affect the conjunctiva and lens. Clinically, this damage can manifest as skin cancer and premature skin ageing as well as the development of pterygia and premature cortical cataracts. Modern eye protection, used daily, offers the opportunity to prevent these adverse sequelae of lifelong UV exposure. A standardized, reliable and comprehensive label for consumers and professionals is currently lacking. In this review we (i) summarize the existing literature about UV radiation-induced damage to the eye and surrounding skin; (ii) review the recent technological advances in UV protection by means of lenses; (iii) review the definition of the Eye-Sun Protection Factor (E-SPF®), which describes the intrinsic UV protection properties of lenses and lens coating materials based on their capacity to absorb or reflect UV radiation; and (iv) propose a strategy for establishing the biological relevance of the E-SPF. © 2013 John Wiley & Sons A/S.
Resumo:
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers. © 2014 Behar-Cohen et al, This work is published by Dove Medical Press Ltd.