3 resultados para queuing system

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26  In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β      Γ ((q-3/β) +1) d qp = d fr  .α        Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients’ department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Queuing is a key efficiency criterion in any service industry, including Healthcare. Almost all queue management studies are dedicated to improving an existing Appointment System. In developing countries such as Pakistan, there are no Appointment Systems for outpatients, resulting in excessive wait times. Additionally, excessive overloading, limited resources and cumbersome procedures lead to over-whelming queues. Despite numerous Healthcare applications, Data Envelopment Analysis (DEA) has not been applied for queue assessment. The current study aims to extend DEA modelling and demonstrate its usefulness by evaluating the queue system of a busy public hospital in a developing country, Pakistan, where all outpatients are walk-in; along with construction of a dynamic framework dedicated towards the implementation of the model. The inadequate allocation of doctors/personnel was observed as the most critical issue for long queues. Hence, the Queuing-DEA model has been developed such that it determines the ‘required’ number of doctors/personnel. The results indicated that given extensive wait times or length of queue, or both, led to high target values for doctors/personnel. Hence, this crucial information allows the administrators to ensure optimal staff utilization and controlling the queue pre-emptively, minimizing wait times. The dynamic framework constructed, specifically targets practical implementation of the Queuing-DEA model in resource-poor public hospitals of developing countries such as Pakistan; to continuously monitor rapidly changing queue situation and display latest required personnel. Consequently, the wait times of subsequent patients can be minimized, along with dynamic staff scheduling in the absence of appointments. This dynamic framework has been designed in Excel, requiring minimal training and work for users and automatic update features, with complex technical aspects running in the background. The proposed model and the dynamic framework has the potential to be applied in similar public hospitals, even in other developing countries, where appointment systems for outpatients are non-existent.