18 resultados para protein diet
em Aston University Research Archive
Resumo:
Although the association between maternal periconceptional diet and adult offspring health is well characterised, our understanding of the impact of paternal nutrition at the time of conception on offspring phenotype remains poorly defined. Therefore, we determined the effect of a paternal preconception low protein diet (LPD on adult offspring cardiovascular and metabolic health in mice. Male C57BL/6 mice were fed either normal protein diet (NPD; 18% casein or LPD (9% casein for 7 wk before mating. At birth, a reduced male-to-female ratio (P = 0.03 and increased male offspring weight (P = 0.009 were observed in litters from LPD compared with NPD stud males with no differences in mean litter size. LPD offspring were heavier than NPD offspring at 2 and 3 wk of age (P <0.02. However, no subsequent differences in body weight were observed. Adult male offspring derived from LPD studs developed relative hypotension (decreased by 9.2 mmHg and elevated heart rate (P <0.05, whereas both male and female offspring displayed vascular dysfunction and impaired glucose tolerance relative to NPD offspring. At cull (24 wk, LPD males had elevated adiposity (P = 0.04, reduced heart-to-body weight ratio (P = 0.04, and elevated circulating TNF-α levels (P = 0.015 compared with NPD males. Transcript expression in offspring heart and liver tissue was reduced for genes involved in calcium signaling (Adcy, Plcb, Prkcb and metabolism (Fto in LPD offspring (P <0.03. These novel data reveal the impact of suboptimal paternal nutrition on adult offspring cardiovascular and metabolic homeostasis, and provide some insight into the underlying regulatory mechanisms.
Resumo:
Previously, we have shown that a maternal low protein diet, fed exclusively during the preimplantation period of mouse development (Emb-LPD), is sufficient to induce by the blastocyst stage a compensatory growth phenotype in late gestation and postnatally, correlating with increased risk of adult onset cardiovascular disease and behavioural dysfunction. Here, we examine mechanisms of induction of maternal Emb-LPD programming and early compensatory responses by the embryo. Emb-LPD induced changes in maternal serum metabolites at the time of blastocyst formation (E3.5), notably reduced insulin and increased glucose, together with reduced levels of free amino acids (AAs) including branched chain AAs leucine, isoleucine and valine. Emb-LPD also caused reduction in the branched chain AAs within uterine fluid at the blastocyst stage. These maternal changes coincided with an altered content of blastocyst AAs and reduced mTORC1 signalling within blastocysts evident in reduced phosphorylation of effector S6 ribosomal protein and its ratio to total S6 protein but no change in effector 4E-BP1 phosphorylated and total pools. These changes were accompanied by increased proliferation of blastocyst trophectoderm and total cells and subsequent increased spreading of trophoblast cells in blastocyst outgrowths. We propose that induction of metabolic programming following Emb-LPD is achieved through mTORC1signalling which acts as a sensor for preimplantation embryos to detect maternal nutrient levels via branched chain AAs and/or insulin availability. Moreover, this induction step associates with changes in extra-embryonic trophectoderm behaviour occurring as early compensatory responses leading to later nutrient recovery. © 2012 Fleming et al.
Resumo:
Human and animal studies have revealed a strong association between periconceptional environmental factors, such as poor maternal diet, and an increased propensity for cardiovascular and metabolic disease in adult offspring. Previously, we reported cardiovascular and physiological effects of maternal low protein diet (LPD) fed during discrete periods of periconceptional development on 6-month-old mouse offspring. Here, we extend the analysis in 1 year aging offspring, evaluating mechanisms regulating growth and adiposity. Isocaloric LPD (9% casein) or normal protein diet (18% casein; NPD) was fed to female MF-1 mice either exclusively during oocyte maturation (for 3.5 days prior to mating; Egg-LPD, Egg-NPD, respectively), throughout gestation (LPD, NPD) or exclusively during preimplantation development (for 3.5 days post mating; Emb-LPD). LPD and Emb-LPD female offspring were significantly lighter and heavier than NPD females respectively for up to 52 weeks. Egg-LPD, LPD and Emb-LPD offspring displayed significantly elevated systolic blood pressure at 52 weeks compared to respective controls (Egg-NPD, NPD). LPD females had significantly reduced inguinal and retroperitoneal fat pad: body weight ratios compared to NPD females. Expression of the insulin receptor (Insr) and insulin-like growth factor I receptor (Igf1r) in retroperitoneal fat was significantly elevated in Emb-LPD females (P&0.05), whilst Emb-LPD males displayed significantly decreased expression of the mitochondrial uncoupling protein 1 (Ucp1) gene compared to NPD offspring. LPD females displayed significantly increased expression of Ucp1 in interscapular brown adipose tissue when compared to NPD offspring. Our results demonstrate that aging offspring body weight, cardiovascular and adiposity homeostasis can be programmed by maternal periconceptional nutrition. These adverse outcomes further exemplify the criticality of dietary behaviour around the time of conception on long-term offspring health. © 2011 Watkins et al.
Resumo:
Environmental perturbations during early mammalian development can affect aspects of offspring growth and cardiovascular health. We have demonstrated previously that maternal gestational dietary protein restriction in mice significantly elevated adult offspring systolic blood pressure. Therefore, the present study investigates the key mechanisms of blood pressure regulation in these mice. Following mating, female MF-1 mice were assigned to either a normal-protein diet (NPD; 18% casein) or an isocaloric low-protein diet throughout gestation (LPD; 9% casein), or fed the LPD exclusively during the pre-implantation period (3.5d) before returning to the NPD for the remainder of gestation (Emb-LPD). All offspring received standard chow. At 22 weeks, isolated mesenteric arteries from LPD and Emb-LPD males displayed significantly attenuated vasodilatation to isoprenaline (P=0.04 and P=0.025, respectively), when compared with NPD arteries. At 28 weeks, stereological analysis of glomerular number in female left kidneys revealed no significant difference between the groups. Real-time RT-PCR analysis of type 1a angiotensin II receptor, Na /K ATPase transporter subunits and glucocorticoid receptor expression in male and female left kidneys revealed no significant differences between the groups. LPD females displayed elevated serum angiotensin-converting enzyme (ACE) activity (P=0.044), whilst Emb-LPD males had elevated lung ACE activity (P=0.001), when compared with NPD offspring. These data demonstrate that elevated offspring systolic blood pressure following maternal gestational protein undernutrition is associated with impaired arterial vasodilatation in male offspring, elevated serum and lung ACE activity in female and male offspring, respectively, but kidney glomerular number in females and kidney gene expression in male and female offspring appear unaffected. © 2010 The Authors.
Resumo:
Early embryonic development is known to be susceptible to maternal undernutrition, leading to a disease-related postnatal phenotype. To determine whether this sensitivity extended into oocyte development, we examined the effect of maternal normal protein diet (18% casein; NPD) or isocaloric low protein diet (9% casein; LPD) restricted to one ovulatory cycle (3.5 days) prior to natural mating in female MF-1 mice. After mating, all females received NPD for the remainder of gestation and all offspring were litter size adjusted and fed standard chow. No difference in gestation length, litter size, sex ratio or postnatal growth was observed between treatments. Maternal LPD did, however, induce abnormal anxiety-related behaviour in open field activities in male and female offspring (P <0.05). Maternal LPD offspring also exhibited elevated systolic blood pressure (SBP) in males at 9 and 15 weeks and in both sexes at 21 weeks (P <0.05). Male LPD offspring hypertension was accompanied by attenuated arterial responsiveness in vitro to vasodilators acetylcholine and isoprenaline (P <0.05). LPD female offspring adult kidneys were also smaller, but had increased nephron numbers (P <0.05). Moreover, the relationship between SBP and kidney or heart size or nephron number was altered by diet treatment (P <0.05). These data demonstrate the sensitivity of mouse maturing oocytes in vivo to maternal protein undernutrition and identify both behavioural and cardiovascular postnatal outcomes, indicative of adult disease. These outcomes probably derive from a direct effect of protein restriction, although indirect stress mechanisms may also be contributory. Similar and distinct postnatal outcomes were observed here compared with maternal LPD treatment during post-fertilization preimplantation development which may reflect the relative contribution of the paternal genome. © Journal compilation © 2008 The Physiological Society.
Resumo:
Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.
Resumo:
Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and 'decisions' made by embryos to optimise their own development, but with lasting consequences.
Resumo:
Cells and organisms respond to nutrient deprivation by decreasing global rates of transcription, translation and DNA replication. To what extent such changes can be reversed is largely unknown. We examined the effect of maternal dietary restriction on RNA synthesis in the offspring. Low protein diet fed either throughout gestation or for the preimplantation period alone reduced cellular RNA content across fetal somatic tissues during challenge and increased it beyond controls in fetal and adult tissues after challenge release. Changes in transcription of ribosomal RNA, the major component of cellular RNA, were responsible for this phenotype as evidenced by matching alterations in RNA polymerase I density and DNA methylation at ribosomal DNA loci. Cellular levels of the ribosomal transcription factor Rrn3 mirrored the rRNA expression pattern. In cell culture experiments, Rrn3 overexpression reduced rDNA methylation and increased rRNA expression; the converse occurred after inhibition of Rrn3 activity. These observations define novel mechanism where poor nutrition before implantation irreversibly alters basal rates of rRNA transcription thereafter in a process mediated by rDNA methylation and Rrn3 factor.
Resumo:
Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.
Resumo:
Protein oxidation can be perceived as essential for the control of intracellular signalling and gene expression on the one hand, but in contrast, a potentially cytotoxic hazard of aerobic life. Reduction and oxidation of thiol groups on specific cysteine residues can act as critical molecular switches, in modulating response to growth factors, apoptotic and inflammatory stimuli to name a few. Such oxidative reactions are likely to be transient and represent low levels of oxidative modification to a protein. Sustained oxidative stress conditions through absence of essential dietary antioxidant or low activity of endogenous enzyme scavengers can cause irreversible damage and loss of function. Such modifications are believed to be important in many diseases associated with ageing. Therefore, it has been postulated that diet may exert an influence on the steady state of protein oxidation and thus offer potential health benefits through preservation of normal protein function. In the present paper, the current evidence from in vivo studies on the effects of dietary antioxidants and oxidants on protein oxidation will be evaluated, and needs for future research will be highlighted.
Resumo:
Purpose: Prenatal undernutrition followed by postweaning feeding of a high-fat diet results in obesity in the adult offspring. In this study, we investigated whether diet-induced thermogenesis is altered as a result of such nutritional mismatch. Methods: Female MF-1 mice were fed a normal protein (NP, 18 % casein) or a protein-restricted (PR, 9 % casein) diet throughout pregnancy and lactation. After weaning, male offspring of both groups were fed either a high-fat diet (HF; 45 % kcal fat) or standard chow (C, 7 % kcal fat) to generate the NP/C, NP/HF, PR/C and PR/HF adult offspring groups (n = 7-11 per group). Results: PR/C and NP/C offspring have similar body weights at 30 weeks of age. Postweaning HF feeding resulted in significantly heavier NP/HF offspring (P <0.01), but not in PR/HF offspring, compared with their chow-fed counterparts. However, the PR/HF offspring exhibited greater adiposity (P <0.01) v the NP/HF group. The NP/HF offspring had increased energy expenditure and increased mRNA expression of uncoupling protein-1 and β-3 adrenergic receptor in the interscapular brown adipose tissue (iBAT) compared with the NP/C mice (both at P <0.01). No such differences in energy expenditure and iBAT gene expression were observed between the PR/HF and PR/C offspring. Conclusions: These data suggest that a mismatch between maternal diet during pregnancy and lactation, and the postweaning diet of the offspring, can attenuate diet-induced thermogenesis in the iBAT, resulting in the development of obesity in adulthood. © 2014 Springer-Verlag Berlin Heidelberg.
Resumo:
Protein quality of carp diets was assessed by five methods: 1. True digestibility, true NPU, BV (as percentage) and PER were determined for approximately iso-energetic diets containing ca.38% protein from 4 different sources. Fish meal gave values of 94.0, 72.5, 77.0, and 1.21 respectively; egg 93.0, 65.4, 70.3, 1.26; Pruteen 68.4, 63.6, 68.40, 1.36; and Casein 91.0, 56.90, 62.5, 1.33. 2. Blood urea were determined and found to be significantly increased with increasing protein concentration in the diet. 3. Ammonia excretion rate was determined; it increased with a decline in protein quality, being greater on groundnut, rapeseed meal, and sunflower diets than on fishmeal, cottonseed meal, and pruteen. 4. Protein sources were incubated in vitro with digestive fluids of fish. Protein digestibilities for fishmeal diets containing 14 and 27% protein were 90.2 and 93.0% respectively; casein (18 and 36%), 91.5 and 93.2%; soybean (10 and 20%), 84.2 and 85.3% ; sunflower (8 and 16%), 64.2 and 66.1%; and fish meal plus soybean meal (ca. 18.2%) 86.5. 5. Plasma free amino acids were individually determined at 0, 6, 24 and 48 h after force-feeding diets containing 15 and 30% protein from six different sources. Total free AA were highest at 24 h for casein and fishmeal, and at 48 h for egg, soybean, rapeseed and sunflower. The 24 h essential amino acid indices (EAAI) for the six diets at 15% protein were, in the same order, 93.0, 100, 100, 86.4, 62.4, and 97.2. At 30% protein, the 24 h EAAI were 78.5, 84.3, 100, and 83.8 for casein, fishmeal, egg, and rapeseed respectively.
Resumo:
Full editorial: A recent study evaluating the long-term (2 yr) weight reducing efficacy of different types of diets – high or low in carbohydrates (CHOs), protein or fat - confirmed that it is calorie deficit not dietary composition that determines the loss and maintenance of body weight.1 Is there any advantage in following a specific weight loss diet? Short-term use of nutritionally complete commercially available (very) low calorie diets has benefited people with diabetes when supported by education programmes.2 Initial weight loss has been encouraging with some fad diets eg the Atkins and the South Beach diets, but these diets are difficult to maintain and there are safety issues regarding their short- and long-term use – especially in people with diabetes.3 The types of macronutrients consumed can have a considerable impact on glycaemic control and energy metabolism. Although a low CHO diet additionally enhances initial weight loss by reducing cellular water content, if fat is not proportionally reduced the diet may not benefit the lipid profile for vascular disease risk. High fat and high protein diets – which are simultaneously low in CHOs – increase vulnerability to hypoglycaemia in people taking insulin secretagogues or on insulin therapy, and may promote excess fat metabolism and ketogenesis, particularly in people vulnerable to lack of insulin. Very low protein diets are not recommended as lean body mass tends to be reduced in diabetes. Altering the macronutrient balance has implications for the micronutrient mix: deficiencies are higher if more foods are excluded and conversely specific micronutrient excess can occur with some fad diets. The altered nutrient mix affects intestinal fauna and flora, and gut motility and glycaemic control are influenced by the quantity and type of fibre consumed. Support programmes help individuals achieve long term weight loss and there is mounting evidence that community schemes which educate and promote lifestyle changes may stem the rising tide of obesity and consequent type 2 diabetes.4 Consuming smaller portions of a balanced diet (and adjusting antidiabetic medications accordingly) will create an energy deficit to promote healthy weight loss. Increased movement/exercise will enhance this energy deficit. Knowledge (eg 1g fat has 2.25 times more energy than 1g CHO) allows sensible food choices and compensation for inclusion of small volumes of ‘naughty but nice’ foods. Ultimately weight control requires self control. References 1. Sacks FM, Bray GA, Carey VJ et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009;360:859–73. 2. Bennett P. Obesity, diabetes and VLCD. Br J Diabetes Vasc Dis 2004;4:328–30. 3. Baldwin EJ. Fad diets in diabetes. Br J Diabetes Vasc DIs 2004;4:333–7. 4. Romon M, Lommoz A, Tafflet M et al. Downward trends in the prevalence of childhood overweight in the setting of 12-year school- and community-based programmes. Public Health Nutr 2008; Dec 28, 1–8 [Epub ahead of print].
Resumo:
Abstract Nutritional management of blood glucose levels is a strategic target in the prevention and management of type 2 diabetes mellitus (T2DM). To implement such an approach it is essential to understand the effect of food on glycaemic regulation and on the underlying metabolic derangements. This comprehensive review summarises the results from human dietary interventions exploring the impact of dietary components on blood glucose levels. Included are the major macronutrients; carbohydrate, protein and fat, micronutrient vitamins and minerals, non-nutrient phytochemicals and additional foods including low-calorie sweeteners, vinegar and alcohol. Based on the evidence presented in this review, it is clear that dietary components have significant and clinically relevant effects on blood glucose modulation. An integrated approach that includes reducing excess body weight, increased physical activity along with a dietary regime to regulate blood glucose levels will not only be advantages in T2DM management, but will benefit the health of the population and limit the increasing worldwide incidence of T2DM.