27 resultados para propylene epoxidation
em Aston University Research Archive
Resumo:
A series of ethylene propylene terpolymer vulcanizates, prepared by varying termonomer type, cure system, cure time and cure temperature, are characterized by determining the number and type of cross-links present. The termonomers used represent the types currently available in commercial quantities. Characterization is carried out by measuring the C1 constant of the Mooney Rivlin Saunders equation before and after treatment with the chemical probes propane-2-thiol/piperidine and n-hexane thiol/piperidine, thus making it possible to calculate the relative proportions of mono-sulphidic, di-sulphidic and poly- sulphidic cross-links. The cure systems used included both sulphur and peroxide formulations. Specific physical properties are determined for each network and an attempt is made to correlate observed changes in these with variations in network structure. A survey of the economics of each formulation based on a calculated efficiency parameter for each cure system is included. Values of C1 are calculated from compression modulus data after the reliability of the technique when used with ethylene propylene terpolymers had been established. This is carried out by comparing values from both compression and extension stress strain measurements for natural rubber vulcanizates and by assessing the effects of sample dimensions and the degree of swelling. The technique of compression modulus is much more widely applicable than previously thought. The basic structure of an ethylene propylene terpolymer network appears to be independent of the type of cure system used ( sulphur based systems only), the proportions of constituent cross-links being nearly constant.
Resumo:
The main aim of this work was two fold, firstly to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigon ox 101, Tl 01) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with increasing the DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. Compared to a conventional EPR-g-GMACONV (in the absence of a comonomer), the presence of the comonomer DVB in the grafting system was shown to result in more branching and crosslinking (shown from an increase in melt flow index (MFI) and torque values) and this was paralleled by an increase in DVB concentration. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this. reflects that the side reactions were favorable in the conventional grafting system. The second aim was to examine the effect of the in-situ functionalised EPR when used as a compatibiliser for binary blends. It was found that blending PET with functionalised EPR (ƒ-EPR) gave a significant improvement in terms of blend morphology as well as mechanical properties. The results showed clearly that, blending PET with ƒ-EPRDVB (prepared with DVB) was much more effective compared to the corresponding PET/ƒ-EPRCONV (without DVB) blends in which ƒ-EPRDVB having optimum grafting level of 2.1 wt% gave the most pronounced effect on the morphology and mechanical properties. On the other hand, blends of PET/ƒ-EPRDVB containing high GMA/DVB ratio was found to be unfavorable hence exhibited lower tensile properties and showed unfavorable morphology. The presence of high polyGMA concentration in ƒ-EPRCONV was found to create damaging effect on its morphology, hence resulting in reduced tensile properties (e.g. low elongation at break). However, the use of commercial terpolymers based on ethylene-methacrylate-glycidyl methacrylate (EM-GMA)or a copolymer of ethylene-glycidyl methacrylate (E-GMA) containing various GMA levels as compatibilisers in PET/EPR blends was found to be more efficient compared to PET/EPR/ƒ-EPR blends with the former blends showing finer morphology and high elongation at break. The high efficiency of the terpolymers or copolymers in compatibilising the PET/EPR blends is suggested to be partly, higher GMA content compared to the amount in ƒ-EPR and due to its low viscosity.
Resumo:
The main aim of this work was to investigate the effect of a highly reactive comonomer, divinylbenzene (DVB), on the extent of melt grafting of glycidyl methacrylate (GMA) on ethylene-propylene rubber (EPR) using 2,5-dimethyl-2,5-bis-(tert-butyl peroxy) hexane (Trigonox 101, T101) as a free radical initiator, and to compare the results with a conventional grafting of the same monomer on EPR. To achieve this, the effect of processing conditions and chemical composition including the concentration of peroxide, GMA and DVB on the extent of grafting was investigated. The presence of the comonomer (DVB) in the grafting process resulted in a significant increase in the extent of the grafting using only a small concentration of peroxide. It was also found that the extent of grafting increased drastically with the increasing DVB concentration. Interestingly, in the comonomer system, the extent of the undesired side reaction, normally the homopolymerisation of GMA (polyGMA) was shown to have reduced tremendously and in most cases the level of polyGMA was immeasurable in the samples. In contrast, the extent of grafting in conventional system increased with increasing the peroxide concentration but the level of grafting was much lower than in the case of DVB. Homopolymerisation of GMA and excessive crosslinking of EPR became dominant at high peroxide concentration and this reflects that the side reactions were favourable in the conventional grafting system.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Ethylene-propylene diene terpolymer (EPDM) was functionalized with glycidyl methacrylate (GMA) during melt processing by free radical grafting with peroxide initiation in the presence and absence of a reactive comonomer trimethylolpropane triacrylate (Tris). Increasing the peroxide concentration resulted in an increase in the GMA grafting yield, albeit the overall grafting level was low and was accompanied by higher degree of crosslinking of EPDM which was found to be the major competing reaction. The presence of Tris in the grafting system gave rise to higher grafting yield produced at a much lower peroxide concentration though the crosslinking reactions remained high but without the formation of GMA-homopolymer in either of the two systems. The use of these functionalized EPDM (f-EPDM) samples with PET as compatibilisers in binary and ternary blends of PET/EPDM/f-EPDM was evaluated. The influence of the different functionalisation routes of the rubber phase (in presence and absence of Tris) and the effect of the level of functionality and microstructure of the resultant f-EPDM on the extent of the interfacial reaction, morphology and mechanical properties was also investigated. It is suggested that the mechanical properties of the blends are strongly influenced by the performance of the graft copolymer, which is in turn, determined by the level of functionality, molecular structure of the functionalized rubber and the interfacial concentration of the graft copolymer across the interface. The cumulative evidence obtained from torque rheometry, scanning electron microscopy, SEM, dynamic mechanical analysis (DMA), tensile mechanical tests and Fourier transform infrared (FTIR) supports this. It was shown that binary and ternary blends prepared with f-EPDM in the absence of Tris and containing lower levels of g-GMA effected a significant improvement in mechanical properties. This increase, particularly in elongation to break, could be accounted for by the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET that would result in a graft copolymer which could, most probably, preferentially locate at the interface, thereby acting as an 'emulsifier' responsible for decreasing the interfacial tension between the otherwise two immiscible phases. This is supported by results from FTIR analysis of the fractionated PET phase of these blends which confirm the formation of an interfacial reaction, DMA results which show a clear shift in the T s of the blend components and SEM results which reveal very fine morphology, suggesting effective compatibilisation that is concomitant with the improvement observed in their tensile properties. Although Tris has given rise to highest amount of g-GMA, it resulted in lower mechanical properties than the optimized blends produced in the absence of Tris. This was attributed to the difference in the microstructure of the graft and the level of functionality in these samples resulting in less favourable structure responsible for the coarser dispersion of the rubber phase observed by SEM, the lower extent of T shift of the PET phase (DMA), the lower height of the torque curve during reactive blending and FTIR analysis of the separated PET phase that has indicated a lower extent of the interfacial chemical reaction between the phases in this Tris-containing blend sample. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene-propylene rubber (EPR) functionalised with glycidyl methacrylate (GMA) (f-EPR) during melt processing in the presence of a co-monomer, such as trimethylolpropane triacrylate (Tris), was used to promote compatibilisation in blends of polyethylene terephthalate (PET) and f-EPR, and their characteristics were compared with those of PET/f-EPR reactive blends in which the f-EPR was functionalised with GMA via a conventional free radical melt reaction (in the absence of a co-monomer). Binary blends of PETand f-EPR (with two types of f-EPR prepared either in presence or absence of the co-monomer) with various compositions (80/20, 60/40 and 50/50 w/w%) were prepared in an internal mixer. The blends were evaluated by their rheology (from changes in torque during melt processing and blending reflecting melt viscosity, and their melt flow rate), morphology scanning electron microscopy (SEM), dynamic mechanical properties (DMA), Fourier transform infrared (FTIR) analysis, and solubility (Molau) test. The reactive blends (PET/f-EPR) showed a marked increase in their melt viscosities in comparison with the corresponding physical (PET/EPR) blends (higher torque during melt blending), the extent of which depended on the amount of homopolymerised GMA (poly-GMA) present and the level of GMA grafting in the f-EPR. This increase was accounted for by, most probably, the occurrence of a reaction between the epoxy groups of GMA and the hydroxyl/carboxyl end groups of PET. Morphological examination by SEM showed a large improvement of phase dispersion, indicating reduced interfacial tension and compatibilisation, in both reactive blends, but with the Tris-GMA-based blends showing an even finer morphology (these blends are characterised by absence of poly-GMA and presence of higher level of grafted GMA in its f-EPR component by comparison to the conventional GMA-based blends). Examination of the DMA for the reactive blends at different compositions showed that in both cases there was a smaller separation between the glass transition temperatures compared to their position in the corresponding physical blends, which pointed to some interaction or chemical reaction between f-EPR and PET. The DMA results also showed that the shifts in the Tgs of the Tris-GMA-based blends were slightly higher than for the conventional GMA-blends. However, the overall tendency of the Tgs to approach each other in each case was found not to be significantly different (e.g. in a 60/40 ratio the former blend shifted by up to 4.5 °C in each direction whereas in the latter blend the shifts were about 3 °C). These results would suggest that in these blends the SEM and DMA analyses are probing uncorrelatable morphological details. The evidence for the formation of in situ graft copolymer between the f-EPR and PET during reactive blending was clearly illustrated from analysis by FTIR of the separated phases from the Tris-GMA-based reactive blends, and the positive Molau test pointed out to graft copolymerisation in the interface. A mechanism for the formation of the interfacial reaction during the reactive blending process is proposed.
Resumo:
Two modified Jacobsen-type catalysts were anchored onto an amine functionalised hexagonal mesoporous silica (HMS) using two distinct anchoring procedures: (i) one was anchored directly through the carboxylic acid functionalised diimine bridge fragment of the complex (CAT1) and (ii) the other through the hydroxyl group on the aldehyde fragment of the complex (CAT2), mediated by cyanuric chloride. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, DRIFT, UV-vis, porosimetry and XPS which showed that the complexes were successfully anchored onto the hexagonal mesoporous silica. These materials acted as active heterogeneous catalysts in the epoxidation of styrene, using m-CPBA as oxidant, and α-methylstyrene, using NaOCl as oxidant. Under the latter conditions they acted also as enantioselective heterogeneous catalysts. Furthermore, when compared to the reaction run in homogeneous phase under similar experimental conditions, an increase in asymmetric induction was observed for the heterogenised CAT1, while the opposite effect was observed for the heterogenised CAT2, despite of CAT2 being more enantioselective than CAT1 in homogeneous phase. These results indicate that the covalent attachment of the Jacobsen catalyst through the diimine bridge leads to improved enantiomeric excess (%ee), whereas covalent attachment through one of the aldehyde fragments results in a negative effect in the %ee. Using α-methylstyrene and NaOCl as oxidant, heterogeneous catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A Jacobsen-type catalyst was anchored onto an amine functionalised hexagonal mesoporous silica (HMS) through the diimine bridge fragment of the complex. The new heterogeneous catalyst, as well as the precedent materials, were characterised by elemental analyses, FTIR-DRIFT, UV-vis, porosimetry and XPS which showed that the complex was successfully anchored. This material was active in the epoxidation of styrene and α-methylstyrene in dichloromethane at 0°C using, respectively, m-CPBA/NMO and NaOCl. With the former substrate no asymmetric induction was found in the epoxide, whereas with the latter substrate higher %ee was found than in homogeneous phase. Using the latter experimental conditions, catalyst reuse led to no significant loss of catalytic activity and enantioselectivity. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Glycidyl methacrylate (GMA) was grafted on ethylene-propylene copolymer during melt processing with peroxide initiation in the presence and absence of a more reactive comonomer (coagent), trimethylolpropane triacrylate (Tris). The characteristics of the grafting systems in terms of the grafting reaction yield and the nature and extent of the competing side reactions were examined. The homopolymers of GMA (Poly-GMA) and Tris (Poly-Tris) and the GMA-Tris copolymer (GMA-co-Tris) were synthesized and characterized. In the absence of the coagent, high levels of poly-GMA, which constituted the major competing reaction, was formed, giving rise to low GMA grafting levels. Further, this grafting system resulted in a high extent of gel formation and polymer crosslinking due to the high levels of peroxide needed to achieve optimum GMA grafting and a consequent large drop in the melt index (increased viscosity) of the polymer. In the presence of the coagent, however, the grafting system required much lower peroxide concentration, by almost an order of magnitude, to achieve the optimum grafting yield. The coagent-containing GMA-grafting system has also resulted in a drastic reduction in the extent of all competing reactions, and in particular, the GMA homopolymerization, leading to improved GMA grafting efficiency with no detectable gel or crosslinking. The mechanisms of the grafting reactions, in the presence and absence of Tris, are proposed.
Resumo:
Background: There are increasing reports of propylene glycol (PG) toxicity, which is used in many medications as a solvent for water-insoluble drugs. Polypharmacy may increase PG exposure in vulnerable PICU patients who may accumulate PG due to compromised liver and renal function. The study aim was to quantify PG intake in PICU patients and attitudes of clinicians towards PG. Methods: A snapshot of 50 patients’ medication intake was collected. Other data collected included age, weight, diagnosis, lactate levels and renal function. Manufacturers were contacted for PG content and then converted to mg/kg. Excipients in formulations that compete with the PG metabolism pathway were recorded. The Intensivists opinions on PG intake was sought via e-survey. Results: The 50 patients were prescribed 62 drugs and 83 formulations, 43/83 (52 %) were parenteral formulations. Sixteen formulations contained PG, 2/16 were parenteral, 6/16 unlicensed preparations. Thirty-eight patients received drugs with PG. PG intake ranged from 0.002 mg/kg/day to 250 mg/kg/day, with 29/38 receiving formulations with concomitant pathway competing excipients. The total amount could not be quantified in two cases due to lack of availability of information from the manufacturer. Four commonly used formulations contributed to higher intakes of PG. Only 1/16intensivists was aware of PG content in drugs, 16/16 would actively change therapy if intake was above European Medicines Agency recommendations. Conclusions: Certain formulations used on PICU can considerably increase PG exposure to patients. These should be highlighted to the clinician to make an informed decision regarding risks versus benefits in continuing that drug or formulation.
Resumo:
Measurements were carried out to determine local coefficients of heat transfer in short lengths of horizontal pipe, and in the region of an discontinuity in pipe diameter. Laminar, transitional and turbulent flow regimes were investigated, and mixtures of propylene glycol and water were used in the experiments to give a range of viscous fluids. Theoretical and empirical analyses were implemented to find how the fundamental mechanism of forced convection was modified by the secondary effects of free convection, temperature dependent viscosity, and viscous dissipation. From experiments with the short tube it was possible to determine simple empirical relationships describing the axial distribution of the local 1usselt number and its dependence on the Reynolds and Prandtl numbers. Small corrections were made to account for the secondary effects mentioned above. Two different entrance configurations were investigated to demonstrate how conditions upstream could influence the heat transfer coefficients measured downstream In experiments with a sudden contraction in pipe diameter the distribution of local 1u3se1t number depended on the Prandtl number of the fluid in a complicated way. Graphical data is presented describing this dependence for a range of fluids indicating how the local Nusselt number varied with the diameter-ratio. Ratios up to 3.34:1 were considered. With a sudden divergence in pipe diameter, it was possible to derive the axial distribution of the local Nusse1t number for a range of Reynolds and Prandtl numbers in a similar way to the convergence experiments. Difficulty was encountered in explaining some of the measurements obtained at low Reynolds numbers, and flow visualization techniques wore used to determine the complex flow patterns which could lead to the anomalous results mentioned. Tests were carried out with divergences up to 1:3.34 to find the way in which the local Nusselt number varied with the diameter ratio, and a few experiments were carried out with very large ratios up .to 14.4. A limited amount of theoretical analysis of the 'divergence' system was carried out to substantiate certain explanations of the heat transfer mechanisms postulated.
Resumo:
The main objectives of this research were to develop optimised chemical compositions and reactive processing conditions for grafting a functional monomer maleic anhydride (MA) in polypropylene (PP), ethylene propylene diene monomer (EPDM) and mixtures of PP-EPDM, and to optimise synthetic routes for production of PP/EPDM copolymers for the purpose of compatibilisation of PP/EPDM blends. The MA-functionalisation was achieved using an internal mixer in the presence of low concentrations (less than 0.01 molar ratio) of a free radical initiator. Various methods were used to purify MA-functionalised PP and the grafting yield was determined using either FTIR or titrametry. The grafting yield of MA alone, which due to its low free-radical reactivity towards polymer macroradicals, was accompanied by severe degradation in the case of PP and crosslinking for EPDM. In the case of MA-functionalised PP/EPDM, both degradation and crosslinking occurred though not to a great extent. The use of tri-functional coagents e.g. trimethylopropane triacrylates (TRIS) with MA, led to high improvement of the grafting yield of MA on the polymers. This is almost certainly due to high free-radical activity of TRIS leading to copolymerisation of MA and TRIS which was followed by grafting of the copolymer onto the polymer backbone. In the case of PP, the use of coagent was also found to reduce the polymer degradation. PP/EPDM copolymers with optimum tensile properties were synthesised using a 'one-step' continues reactive processing procedure. This was achieved firstly by functionalisation of a mixture of PP (higher w/w ratio) and EPDM (low w/w ratio) with MA, in the presence of the coagent TRIS and a small concentration of a free radical initiator. This was then followed by an imidisation reaction with the interlinking agent hexamethylene diamine (HEMDA). Small amount of copolymers, up to 5 phr, which were interlinked with up to 15 phr of HEMDA, were sufficient to compatibilise PP/EPDM75/25 blends resulting in excellent tensile properties compared to binary PP/EPDM 75/25 blend. Improvement in blend's compatibility and phases-stabilisation (observed through tensile and SEM analysis) was shown in all cases with significant interphases adhesion improvement between PP and EPDM, and reduction in domain size across the fractured surface indicating efficient distribution of the compatibiliser.
Resumo:
The aim of this project was to investigate the enzyme catalysed modification of synthetic polymers. It was found that an immobilised lipase from Candida antartica (Novozyme 435) catalysed the selective epoxidation of poly(butadiene) in the presence of hydrogen peroxide and catalytic quantities of acetic acid. The cis and trans double bonds of the backbone were epoxidised in yields of up to 60 % whilst the pendent vinyl groups were untouched. The effect of varying a number of reaction parameters was investigated. These studies suggested that higher yields of epoxide could not be obtained because of the conformational properties of the partially epoxidised polymer. Application of this process to the Baeyer-Villiger reaction of poly(vinyl phenyl ketone) and poly(vinyl methyl ketone) were unsuccessful. The lack of reactivity was found to be a property of the polymer rather than the enzymatic system employed. Attempts to modify hydroxyl containing polymers and polymers bearing active esters close to the polymer backbone were unsuccessful. Steric factors appear to be the most important influence on the outcome of the reactions.
Resumo:
One of the main objectives of this study was to functionalise various rubbers (i.e. ethylene propylene copolymer (EP), ethylene propylene diene terpolymer (EPDM), and natural rubber (NR)) using functional monomers, maleic anhydride (MA) and glycidyl methacrylate (GMA), via reactive processing routes. The functionalisation of the rubber was carried out via different reactive processing methods in an internal mixer. GMA was free-radically grafted onto EP and EPDM in the melt state in the absence and presence of a comonomer, trimethylolpropane triacrylate (TRlS). To optinuse the grafting conditions and the compositions, the effects of various paranleters on the grafting yields and the extent of side reactions were investigated. Precipitation method and Soxhlet extraction method was established to purifY the GMA modified rubbers and the grafting degree was determined by FTIR and titration. It was found that without TRlS the grafting degree of GMA increased with increasing peroxide concentration. However, grafting was low and the homopolymerisation of GMA and crosslinking of the polymers were identified as the main side reactions competing with the desired grafting reaction for EP and EPDM, respectively. The use of the tri-functional comonomer, TRlS, was shown to greatly enhance the GMA grafting and reduce the side reactions in terms of the higher GMA grafting degree, less alteration of the rheological properties of the polymer substrates and very little formation of polyGMA. The grafting mechanisms were investigated. MA was grafted onto NR using both thermal initiation and peroxide initiation. The results showed clearly that the reaction of MA with NR could be thermally initiated above 140°C in the absence of peroxide. At a preferable temperature of 200°C, the grafting degree was increased with increasing MA concentration. The grafting reaction could also be initiated with peroxide. It was found that 2,5-dimethyl-2,5-bis(ter-butylproxy) hexane (TIOI) was a suitable peroxide to initiate the reaction efficiently above I50°C. The second objective of the work was to utilize the functionalised rubbers in a second step to achieve an in-situ compatibilisation of blends based on poly(ethylene terephthalate) (PET), in particular, with GMA-grafted-EP and -EPDM and the reactive blending was carried out in an internal mixer. The effects of GMA grafting degree, viscosities of GMAgrafted- EP and -EPDM and the presence of polyGMA in the rubber samples on the compatibilisation of PET blends in terms of morphology, dynamical mechanical properties and tensile properties were investigated. It was found that the GMA modified rubbers were very efficient in compatibilising the PET blends and this was supported by the much finer morphology and the better tensile properties. The evidence obtained from the analysis of the PET blends strongly supports the existence of the copolymers through the interfacial reactions between the grafted epoxy group in the GMA modified rubber and the terminal groups of PET in the blends.
Resumo:
The aim of this work was to synthesise a series of hydrophilic derivatives of cis-1,2-dihydroxy-3,5-cyclohexadiene (cis-DHCD) and copolymerise them with 2-hydroxyethyl methacrylate (HEMA), to produce a completely new range of hydrogel materials. It is theorised that hydrogels incorporating such derivatives of cis-DHCD will exhibit good strength and elasticity in addition to good water binding ability. The synthesis of derivatives was attempted by both enzymatic and chemical methods. Enzyme synthesis involved the transesterification of cis-DHCD with a number of trichloro and trifluoroethyl esters using the enzyme lipase porcine pancreas to catalyse the reaction in organic solvent. Cyclohexanol was used in initial studies to assess the viability of enzyme catalysed reactions. Chemical synthesis involved the epoxidation of a number of unsaturated carboxylic acids and the subsequent reaction of these epoxy acids with cis-DHCD in DCC/DMAP catalysed esterifications. The silylation of cis-DHCD using TBDCS and BSA was also studied. The rate of aromatisation of cis-DHCD at room temperature was studied in order to assess its stability and 1H NMR studies were also undertaken to determine the conformations adopted by derivatives of cis-DHCD. The copolymerisation of diepoxybutanoate, diepoxyundecanoate, dibutenoate and silyl protected derivatives of cis-DHCD with HEMA, to produce a new group of hydrogels was investigated. The EWC and mechanical properties of these hydrogels were measured and DSC was used to determine the amount of freezing and non-freezing water in the membranes. The effect on EWC of opening the epoxide rings of the comonomers was also investigated