4 resultados para propyl gallate(PG)

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel synthetic approach towards N1-alkylated 3-propyl-1,4-benzodiazepines was developed in five synthetic steps from 2-amino-4-chlorobenzophenone, in which the N-oxide 4 served as a key intermediate. The structure-activity relationship optimization of this 3-prophyl-1,4-benzodiazepine template was carried out on the N1-position by selective alkylation reactions and resulted in a ligand with an improved affinity on the cholecystokinin (CCK2) receptor. The N-allyl-3-propyl-benzodiazepine 6d displayed an affinity towards the CCK2 (CCK-B) receptor of 170 nM in a radiolabelled receptor-binding assay. The anxiolytic activity of this allyl-3-propyl-1,4-benzodiazepine 6d was subsequently determined in in-vivo psychotropic assays. This novel ligand had ED50 values of 4.7 and 5.2 mg kg-1 in the black and white box test and the x-maze, respectively, and no significant sedation/muscle relaxation was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The title compound, C11H11NO3, has two mol-ecules in the asymmetric unit, which differ in the orientation of their side-chain OH groups, allowing them to form inter-molecular O - H⋯O hydrogen bonds to different acceptors. In one case, the acceptor is the OH group of the other mol-ecule, and in the other case it is an imide O=C group. This is the first example in the N-substituted phthalimide series in which independent mol-ecules have different types of acceptor. Mol-ecular-orbital calculations place the greatest negative charge on the OH group. © 2008 International Union of Crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5-HT7 receptor is linked with various CNS disorders. Using an automated solution phase synthesis a combinatorial library of 384 N-substituted N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]-arylsulfonamides was prepared with 24 chemically diverse amines 1-24 and 16 sulfonyl chlorides A-P. The chemical library of alkylated sulfonamides was evaluated in a receptor binding assay with [3]H-5-CT as ligand. The key synthetic step was the alkylation of a sulfonamide with iodide E, which was prepared from butanediol in 4 synthetic steps. The target compounds 1A, 1B .....24A ... 24P were purified by solvent extraction on a Teacan liquid handling system. Sulfonamide J20, B23, D23, G23, G23, J23 , I24 and O24 displayed a binding affinity IC50 between 100 nM and 10 nM. The crystalline J20 (IC50=39 nM) and O24 (IC50=83 nM) were evaluated further in the despair swimming test and the tail suspension assay. A significant antidepressant activity was found in mice of a greater magnitude than imipramine and fluoxetine at low doses. © 2006 Bentham Science Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Loss of muscle protein is a common feature of wasting diseases where currently treatment is limited. This study investigates the potential of epigallocatechin-3-gallate (EGCg), the most abundant catechin in green tea, to reverse the increased protein degradation and rescue the decreased protein synthesis which leads to muscle atrophy. Methods: Studies were conducted in vitro using murine C2C12myotubes. Increased protein degradation and reduced rates of protein synthesis were induced by serum starvation and tumour necrosis factor-α (TNF-α). Results: EGCg effectively attenuated the depression of protein synthesis and increase in protein degradation in murine myotubes at concentrations as low as 10 μM. Serum starvation increased expression of the proteasome 20S and 19S subunits, as well as the proteasome ‘chymotrypsin-like’ enzyme activity, and these were all attenuated down to basal values in the presence of EGCg. Serum starvation did not increase expression of the ubiquitin ligases MuRF1 and MAFbx, but EGCg reduced their expression below basal levels, possibly due to an increased expression of phospho Akt (pAkt) and phospho forkhead box O3a (pFoxO3a). Attenuation of protein degradation by EGCg was increased in the presence of ZnSO4, suggesting an EGCg-Zn2+complex may be the active species. Conclusion: The ability of EGCg to attenuate depressed protein synthesis and increase protein degradation in the myotubule model system suggests that it may be effective in preserving skeletal muscle mass in catabolic conditions.