19 resultados para propagation-rate equations
em Aston University Research Archive
Resumo:
Zeron 100 duplex stainless steel is susceptible to embrittlement following ageing at temperatures between 350 °C and 450 °C. The embrittlement is associated with cleavage of the age-hardened ferrite phase, initiated by deformation twinning. This can result in order of magnitude increases in the fatigue crack propagation rate. The effects of ageing on the mechanisms of fatigue crack propagation in Zero 100 are investigated, and a quantitative model is developed, accounting for the effects of hardness, temperature, stress level and microstructure on the fatigue crack growth rate. © 1994.
Resumo:
From an examination of the literature relating to the catalytic steam reforming of hydrocarbons, it is concluded that the kinetics of high pressure reforming, particularly steam-methane reforming, has received relatively little attention. Therefore because of the increasing availability of natural gas in the U.K., this system was considered worthy of investigation. An examination of the thermodynamics relating to the equilibria of steam-hydrocarbon reforming is described. The reactions most likely to have influence over the process are established and from these a computer program was written to calculate equilibrium compositions. A means of presenting such data in a graphica1 form for ranges of the operating variables is given, and also an operating chart which may be used to quickly check feed ratios employed on a working naphtha reforming plant is presented. For the experimental kinetic study of the steam-methane system, cylindrical pellets of ICI 46-1 nickel catalyst were used in the form of a rod catalyst. The reactor was of the integral type and a description is given with the operating procedures and analytical method used. The experimental work was divided into two parts, qualitative and quantitative. In the qualitative study the various reaction steps are examined in order to establish which one is rate controlling. It is concluded that the effects of film diffusion resistance within the conditions employed are negligible. In the quantitative study it was found that at 250 psig and 6500C the steam-methane reaction is much slower than the CO shift reaction and is rate controlling. Two rate mechanisms and accompanying kinetic rate equations are derived, both of which represent 'chemical' steps in the reaction and are considered of equal merit. However the possibility of a dual control involving 'chemical' and pore diffusion resistances is also expressed.
Resumo:
Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.
Resumo:
Based on the rate equations describing the operation of the Er3+, Pr3+ -codoped ZBLAN fiber lasers with different pump configurations, theoretical calculations that relate to the population characteristics and optimization of CW operation of high power Er3+, Pr3+ :ZBLAN double-clad fiber lasers are presented. Using the measured ET (energy-transfer), ETU (energy-transfer-upconversion) and CR (cross-relaxation) parameters relevant to Er3+, Pr3+ -codoped ZBLAN, a good agreement between the theoretical results from the model and recently reported experimental measurements is obtained. The effects on the slope efficiency of a number of laser parameters including fiber length, reflectance of the output mirror and pumping configuration are quantitatively analyzed and used for the design and optimization of high power Er3+, Pr3+ -codoped ZBLAN fiber lasers.
Resumo:
Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.
Resumo:
A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.
Resumo:
We employ two different methods, based on belief propagation and TAP,for decoding corrupted messages encoded by employing Sourlas's method, where the code word comprises products of K bits selected randomly from the original message. We show that the equations obtained by the two approaches are similar and provide the same solution as the one obtained by the replica approach in some cases K=2. However, we also show that for K>=3 and unbiased messages the iterative solution is sensitive to the initial conditions and is likely to provide erroneous solutions; and that it is generally beneficial to use Nishimori's temperature, especially in the case of biased messages.
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
A series of waveguides was inscribed in a borosilicate glass (BK7) by an 11 MHz repetition rate femtosecond laser operating with pulse energies from 16 to 30 nJ and focused at various depths within the bulk material. The index modification was measured using a quantitative phase microscopy technique that revealed central index changes ranging from 5×10-3 to 10-2, leading to waveguides that exhibited propagation losses of 0.2 dB/cm at a wavelength of 633 nm and 0.6 dB/cm at a wavelength of 1550 nm with efficient mode matching, less than 0.2 dB, to standard optical fibers. Analysis of the experimental data shows that, for a given inscription energy, the index modification has a strong dependence on inscription scanning velocity. At higher energies, the index modification increases with increasing inscription scanning velocity with other fabrication parameters constant.
Resumo:
We report the impact of longitudinal signal power profile on the transmission performance of coherently-detected 112 Gb/s m-ary polarization multiplexed quadrature amplitude modulation system after compensation of deterministic nonlinear fibre impairments. Performance improvements up to 0.6 dB (Q(eff)) are reported for a non-uniform transmission link power profile. Further investigation reveals that the evolution of the transmission performance with power profile management is fully consistent with the parametric amplification of the amplified spontaneous emission by the signal through four-wave mixing. In particular, for a non-dispersion managed system, a single-step increment of 4 dB in the amplifier gain, with respect to a uniform gain profile, at similar to 2/3(rd) of the total reach considerably improves the transmission performance for all the formats studied. In contrary a negative-step profile, emulating a failure (gain decrease or loss increase), significantly degrades the bit-error rate.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The aggregation rate constant was derived from probability analysis of particle–droplet contact combined with time scale analysis of droplet solidification and granule–granule collision rates. The latter was obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate constants were validated by comparison with reported experimental data for a range of binder spray rate, binder droplet size and operating granulator temperature. The developed model is particularly useful for predicting particle size distributions and growth using population balance equations (PBEs).
Resumo:
Error free propagation of a single polarisation optical time division multiplexed 40 Gbit/s dispersion managed pulsed data stream over dispersion (non-shifted) fibre. This distance is twice the previous record at this data rate.
Resumo:
Fatigue crack growth in high strength aluminium alloy 7150 commercial plate material has been studied in both laboratory air and acidified aqueous salt solution. The aggressive aqueous environment enhanced fatigue crack growth rates by up to an order in magnitude compared to laboratory air. The enhancement in fatigue crack growth rate was accompanied by evidence of embrittlement in the crack path, involving both brittle intergranular and transgranular failure modes. Both the enhancement of fatigue crack growth rates and the extent of intergranular growth modes are dependent on cyclic frequency which, along with the absence of a similar frequency effect in a spray-formed version of the material with a significantly different grain structure, supports a mechanism of grain boundary hydrogen diffusion for intergranular corrosion fatigue crack growth. The convergence of corrosion fatigue crack growth rates at high ΔK in both spray-formed and conventional plate materials coincides with the operation of identical transgranular corrosion fatigue modes dependent on strain-controlled hydrogen diffusion ahead of the crack tip. © 1997 Acta Metallurgica Inc.
Resumo:
A study has been made of the influence of the reinforcement/matrix interfacial strength on fatigue crack propagation in a powder metallurgy aluminum alloy 8090-SiC particulate composite. The interfacial region has been altered by two separate routes, the first involving aging of the 8090 matrix, with the subsequent formation of precipitate free zones at the boundaries, and the second consisting of oxidizing the surface of the SiC particles before their incorporation into the composite. In the naturally aged condition, oxidation of the SiC leads to a reduction in fatigue crack growth resistance at higher values of stress intensity range ΔK. This is due to a proportion of the crack growth occurring through voids formed in association with many of the weak SiC interfaces which have retained a layer of thick surface oxide after processing. On overaging no difference in crack growth rate is discernible between the oxidized and unoxidized SiC composites. It is proposed that this is due to similar levels of interfacial weakening having occurred in both composites, indicating that this is an important factor in the reduction of the high ΔK crack growth resistance of the unoxidized SiC composite on aging.