21 resultados para progetto, circuito, energy, harvesting, convertitore, boost, converter, startup

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cascaded DC-DC boost converter is one of the ways to integrate hybrid battery types within a grid-tie inverter. Due to the presence of different battery parameters within the system such as, state-of-charge and/or capacity, a module based distributed power sharing strategy may be used. To implement this sharing strategy, the desired control reference for each module voltage/current control loop needs to be dynamically varied according to these battery parameters. This can cause stability problem within the cascaded converters due to relative battery parameter variations when using the conventional PI control approach. This paper proposes a new control method based on Lyapunov Functions to eliminate this issue. The proposed solution provides a global asymptotic stability at a module level avoiding any instability issue due to parameter variations. A detailed analysis and design of the nonlinear control structure are presented under the distributed sharing control. At last thorough experimental investigations are shown to prove the effectiveness of the proposed control under grid-tie conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To fully utilize second-life batteries on the grid system, a hybrid battery scheme needs to be considered for several reasons: the uncertainty over using a single source supply chain for second-life batteries, the differences in evolving battery chemistry and battery configuration by different suppliers to strive for greater power levels, and the uncertainty of degradation within a second-life battery. Therefore, these hybrid battery systems could have widely different module voltage, capacity, and initial state of charge and state of health. In order to suitably integrate and control these widely different batteries, a suitable multimodular converter topology and an associated control structure are required. This paper addresses these issues proposing a modular boost-multilevel buck converter based topology to integrate these hybrid second-life batteries to a grid-tie inverter. Thereafter, a suitable module-based distributed control architecture is introduced to independently utilize each converter module according to its characteristics. The proposed converter and control architecture are found to be flexible enough to integrate widely different batteries to an inverter dc link. Modeling, analysis, and experimental validation are performed on a single-phase modular hybrid battery energy storage system prototype to understand the operation of the control strategy with different hybrid battery configurations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The use of ex-transportation battery system (i.e. second life EV/HEV batteries) in grid applications is an emerging field of study. A hybrid battery scheme offers a more practical approach in second life battery energy storage systems because battery modules could be from different sources/ vehicle manufacturers depending on the second life supply chain and have different characteristics e.g. voltage levels, maximum capacity and also different levels of degradations. Recent research studies have suggested a dc-side modular multilevel converter topology to integrate these hybrid batteries to a grid-tie inverter. Depending on the battery module characteristics, the dc-side modular converter can adopt different modes such as boost, buck or boost-buck to suitably transfer the power from battery to the grid. These modes have different switching techniques, control range, different efficiencies, which give a system designer choice on operational mode. This paper presents an analysis and comparative study of all the modes of the converter along with their switching performances in detail to understand the relative advantages and disadvantages of each mode to help to select the suitable converter mode. Detailed study of all the converter modes and thorough experimental results based on a multi-modular converter prototype based on hybrid batteries has been presented to validate the analysis.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There is an emerging application which uses a mixture of batteries within an energy storage system. These hybrid battery solutions may contain different battery types. A DC-side cascaded boost converters along with a module based distributed power sharing strategy has been proposed to cope with variations in battery parameters such as, state-of-charge and/or capacity. This power sharing strategy distributes the total power among the different battery modules according to these battery parameters. Each module controller consists of an outer voltage loop with an inner current loop where the desired control reference for each control loop needs to be dynamically varied according to battery parameters to undertake this sharing. As a result, the designed control bandwidth or stability margin of each module control loop may vary in a wide range which can cause a stability problem within the cascaded converter. This paper reports such a unique issue and thoroughly investigates the stability of the modular converter under the distributed sharing scheme. The paper shows that a cascaded PI control loop approach cannot guarantee the system stability throughout the operating conditions. A detailed analysis of the stability issue and the limitations of the conventional approach are highlighted. Finally in-depth experimental results are presented to prove the stability issue using a modular hybrid battery energy storage system prototype under various operating conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Battery energy storage systems have traditionally been manufactured using new batteries with a good reliability. The high cost of such a system has led to investigations of using second life transportation batteries to provide an alternative energy storage capability. However, the reliability and performance of these batteries is unclear and multi-modular power electronics with redundancy have been suggested as a means of helping with this issue. This paper reviews work already undertaken on battery failure rate to suggest suitable figures for use in reliability calculations. The paper then uses reliability analysis and a numerical example to investigate six different multi-modular topologies and suggests how the number of series battery strings and power electronic module redundancy should be determined for the lowest hardware cost using a numerical example. The results reveal that the cascaded dc-side modular with single inverter is the lowest cost solution for a range of battery failure rates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The realisation of an eventual low-voltage (LV) Smart Grid with a complete communication infrastructure is a gradual process. During this evolution the protection scheme of distribution networks should be continuously adapted and optimised to fit the protection and cost requirements at the time. This paper aims to review practices and research around the design of an effective, adaptive and economical distribution network protection scheme. The background of this topic is introduced and potential problems are defined from conventional protection theories and new Smart Grid technologies. Challenges are identified with possible solutions defined as a pathway to the ultimate flexible and reliable LV protection systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit. In generator driving mode, the battery bank is employed to elevate the phase voltage for fast excitation and demagnetization. In battery driving mode, the converter is reconfigured as a four-level converter, and the capacitor is used as an additional charge capacitor to produce multilevel voltage outputs, which enhances the torque capability. The operating modes of the proposed drive are explained and the phase current and voltage are analyzed in details. The battery charging is naturally achieved by the demagnetization current in motoring mode and by the regenerative current in braking mode. Moreover, the battery can be charged by the external AC source or generator through the proposed converter when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating the power flow between the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm the effectiveness of the proposed converter topology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a source or sink of reactive power, compensators can be made from a voltage sourced inverter circuit with the a.c. terminals of the inverter connected to the system through an inductive link and with a capacitor connected across the d.c. terminals. Theoretical calculations on linearised models of the compensators have shown that the parameters characterising the performance are the reduced firing angle and the resonance ratio. The resonance ratio is the ratio of the natural frequency of oscillation of the energy storage components in the circuit to the system frequency. The reduced firing angle of the inverter divided by the damping coefficient, β, where β is half the R to X ratio of the link between the inverter and the system. The theoretical results have been verified by computer simulation and experiment. There is a narrow range of values for the resonance ratio below which there is no appreciable improvement in performance, despite an increase in the cost of the energy storage components, and above which the performance of the equipment is poor with the current being dominated by harmonics. The harmonic performance of the equipment is improved by using multiple inverters and phase shifting transformers to increase the pulse number. The optimum value of the resonance ratio increases pulse number, indicating a reduction in the energy storage components needed at high pulse numbers. The reactive power output from the compensator varies linearly with the reduced firing angle while the losses vary as the square of it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new converter protection method, primarily based on a series dynamic resistor (SDR) that avoids the doubly-fed induction generator (DFIG) control being disabled by crowbar protection during fault conditions. A combined converter protection scheme based on the proposed SDR and conventional crowbar is analyzed and discussed. The main protection advantages are due to the series topology when compared with crowbar and dc-chopper protection. Various fault overcurrent conditions (both symmetrical and asymmetrical) are analyzed and used to design the protection in detail, including the switching strategy and coordination with crowbar, and resistance value calculations. PSCAD/EMTDC simulation results show that the proposed method is advantageous for fault overcurrent protection, especially for asymmetrical faults, in which the traditional crowbar protection may malfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The operation state of photovoltaic Module Integrated Converter (MIC) is subjected to change due to different source and load conditions, while state-swap is usually implemented with flow chart based sequential controller in the past research. In this paper, the signatures for different operational states are evaluated and investigated, which lead to an effective control integrated finite state machine (CIFSM), providing real-time state-swap as fast as the local control loop. The proposed CIFSM is implemented digitally for a boost type MIC prototype and tested under a variety of load and source conditions. The test results prove the effectiveness of the proposed CIFSM design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orimulsion400 is a new generation of the Orimulsion formula. This new generation is a more environmentally friendly, cost-effective energy source. This article describes the product's evolution as well as test results from diverse power plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the power management issues in a mobile solar energy storage system. A multi-converter based energy storage system is proposed, in which solar power is the primary source while the grid or the diesel generator is selected as the secondary source. The existence of the secondary source facilitates the battery state of charge detection by providing a constant battery charging current. Converter modeling, multi-converter control system design, digital implementation and experimental verification are introduced and discussed in details. The prototype experiment indicates that the converter system can provide a constant charging current during solar converter maximum power tracking operation, especially during large solar power output variation, which proves the feasibility of the proposed design. © 2014 IEEE.