5 resultados para product classification
em Aston University Research Archive
Resumo:
Organisations have been approaching servitisation in an unstructured fashion. This is partially because there is insufficient understanding of the different types of Product-Service offerings. Therefore, a more detailed understanding of Product-Service types might advance the collective knowledge and assist organisations that are considering a servitisation strategy. Current models discuss specific aspects on the basis of few (or sometimes single) dimensions. In this paper, we develop a comprehensive model for classifying traditional and green Product-Service offerings, thus combining business and green offerings in a single model. We describe the model building process and its practical application in a case study. The model reveals the various traditional and green options available to companies and identifies how to compete between services; it allows servitisation positions to be identified such that a company may track its journey over time. Finally it fosters the introduction of innovative Product-Service Systems as promising business models to address environmental and social challenges. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
While the retrieval of existing designs to prevent unnecessary duplication of parts is a recognised strategy in the control of design costs the available techniques to achieve this, even in product data management systems, are limited in performance or require large resources. A novel system has been developed based on a new version of an existing coding system (CAMAC) that allows automatic coding of engineering drawings and their subsequent retrieval using a drawing of the desired component as the input. The ability to find designs using a detail drawing rather than textual descriptions is a significant achievement in itself. Previous testing of the system has demonstrated this capability but if a means could be found to find parts from a simple sketch then its practical application would be much more effective. This paper describes the development and testing of such a search capability using a database of over 3000 engineering components.
Resumo:
The verification and validation of engineering designs are of primary importance as they directly influence production performance and ultimately define product functionality and customer perception. Research in aspects of verification and validation is widely spread ranging from tools employed during the digital design phase, to methods deployed for prototype verification and validation. This paper reviews the standard definitions of verification and validation in the context of engineering design and progresses to provide a coherent analysis and classification of these activities from preliminary design, to design in the digital domain and the physical verification and validation of products and processes. The scope of the paper includes aspects of system design and demonstrates how complex products are validated in the context of their lifecycle. Industrial requirements are highlighted and research trends and priorities identified. © 2010 CIRP.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
Aircraft manufacturing industries are looking for solutions in order to increase their productivity. One of the solutions is to apply the metrology systems during the production and assembly processes. Metrology Process Model (MPM) (Maropoulos et al, 2007) has been introduced which emphasises metrology applications with assembly planning, manufacturing processes and product designing. Measurability analysis is part of the MPM and the aim of this analysis is to check the feasibility for measuring the designed large scale components. Measurability Analysis has been integrated in order to provide an efficient matching system. Metrology database is structured by developing the Metrology Classification Model. Furthermore, the feature-based selection model is also explained. By combining two classification models, a novel approach and selection processes for integrated measurability analysis system (MAS) are introduced and such integrated MAS could provide much more meaningful matching results for the operators. © Springer-Verlag Berlin Heidelberg 2010.