4 resultados para principle
em Aston University Research Archive
Resumo:
The analysis and prediction of the dynamic behaviour of s7ructural components plays an important role in modern engineering design. :n this work, the so-called "mixed" finite element models based on Reissnen's variational principle are applied to the solution of free and forced vibration problems, for beam and :late structures. The mixed beam models are obtained by using elements of various shape functions ranging from simple linear to complex cubic and quadratic functions. The elements were in general capable of predicting the natural frequencies and dynamic responses with good accuracy. An isoparametric quadrilateral element with 8-nodes was developed for application to thin plate problems. The element has 32 degrees of freedom (one deflection, two bending and one twisting moment per node) which is suitable for discretization of plates with arbitrary geometry. A linear isoparametric element and two non-conforming displacement elements (4-node and 8-node quadrilateral) were extended to the solution of dynamic problems. An auto-mesh generation program was used to facilitate the preparation of input data required by the 8-node quadrilateral elements of mixed and displacement type. Numerical examples were solved using both the mixed beam and plate elements for predicting a structure's natural frequencies and dynamic response to a variety of forcing functions. The solutions were compared with the available analytical and displacement model solutions. The mixed elements developed have been found to have significant advantages over the conventional displacement elements in the solution of plate type problems. A dramatic saving in computational time is possible without any loss in solution accuracy. With beam type problems, there appears to be no significant advantages in using mixed models.
Resumo:
In response to the increasing international competitiveness, many manufacturing businesses are rethinking their management strategies and philosophies towards achieving a computer integrated environment. The explosive growth in Advanced Manufacturing Technology (AMI) has resulted in the formation of functional "Islands of Automation" such as Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Computer Aided Process Planning (CAPP) and Manufacturing Resources Planning (MRPII). This has resulted in an environment which has focussed areas of excellence and poor overall efficiency, co-ordination and control. The main role of Computer Integrated Manufacturing (CIM) is to integrate these islands of automation and develop a totally integrated and controlled environment. However, the various perceptions of CIM, although developing, remain focussed on a very narrow integration scope and have consequently resulted in mere linked islands of automation with little improvement in overall co-ordination and control. This thesis, that is the research described within, develops and examines a more holistic view of CIM, which is based on the integration of various business elements. One particular business element, namely control, has been shown to have a multi-facetted and underpinning relationship with the CIM philosophy. This relationship impacts various CIM system design aspects including the CIM business analysis and modelling technique, the specification of systems integration requirements, the CIM system architectural form and the degree of business redesign. The research findings show that fundamental changes to CIM system design are required; these are incorporated in a generic CIM design methodology. The affect and influence of this holistic view of CIM on a manufacturing business has been evaluated through various industrial case study applications. Based on the evidence obtained, it has been concluded that this holistic, control based approach to CIM can provide a greatly improved means of achieving a totally integrated and controlled business environment. This generic CIM methodology will therefore make a significant contribution to the planning, modelling, design and development of future CIM systems.
Resumo:
Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.