4 resultados para preparation of composite membrane

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicalite-1/carbon-graphite composite membranes have been prepared using a standard hydrothermal synthesis method and characterized by XRD, SEM, TGA, BET and permeation experiments. Single gas permeation fluxes and binary mixtures separation and selectivity data are reported for methane, ethane and propane using the composite membranes. Carbon-graphite oxidized for 4 h prior to membrane preparation had the most promising separation properties. The permeation fluxes for the binary mixtures reflect that of the single component flux ratios. At 20 °C the membranes show high separation selectivity toward lighter component in binary mixtures. Single gas permeances for methane and ethane were found to decrease with increasing temperatures while that of propane fluctuates. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is currently significant interest in particle-stabilized emulsions for a variety of applications and as precursors to other materials such as micro-capsules or colloidosomes. A prerequisite for many applications is the ability to produce stable droplets with a well-controlled size. The preparation of oil-in-water (o/w) emulsions stabilized by silica colloids has been demonstrated here using membrane ulsification techniques. Emulsions were produced using both a cross-flow membrane device and a rotating membrane reactor. Under the correct conditions, highly stable emulsions with very narrow droplet size distributions can be produced. Investigations into the effects of changing the cross-flow shear rate at a fixed droplet production rate illustrate the fine control over mean droplet size that is possible with these emulsification techniques. Evidence for the importance of particle adsorption kinetics onto growing droplets prior to detachment from the membrane surface was obtained by varying the droplet production rate under fixed shear conditions. The presence of a critical surface coverage by the stabilizing particles to prevent droplet coalescence was clearly seen. Comparison with samples produced using conventional high-shear homogenization highlights the improved control over size distribution available from these membrane techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-oil has successfully been utilized to prepare carbon-silica composites (CSCs) from mesoporous silicas, such as SBA-15, MCM-41, KIT-6 and MMSBA frameworks. These CSCs comprise a thin film of carbon dispersed over the silica matrix and exhibit porosity similar to the parent silica. The surface properties of the resulting materials can be simply tuned by the variation of preparation temperatures leading to a continuum of functionalities ranging from polar hydroxyl rich surfaces to carbonaceous aromatic surfaces, as reflected in solid state NMR, XPS and DRIFT analysis. N2 porosimetry, TEM and SEM images demonstrate that the composites still possess similar ordered mesostructures to the parent silica sample. The modification mechanism is also proposed: silica samples are impregnated with bio-oils (generated from the pyrolysis of waste paper) until the pores are filled, followed by the carbonization at a series of temperatures. Increasing temperature leads to the formation of a carbonaceous layer over the silica surface. The complex mixture of compounds within the bio-oil (including those molecules containing alcohols, aliphatics, carbonyls and aromatics) gives rise to the functionality of the CSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Historically, recombinant membrane protein production has been a major challenge meaning that many fewer membrane protein structures have been published than those of soluble proteins. However, there has been a recent, almost exponential increase in the number of membrane protein structures being deposited in the Protein Data Bank. This suggests that empirical methods are now available that can ensure the required protein supply for these difficult targets. This review focuses on methods that are available for protein production in yeast, which is an important source of recombinant eukaryotic membrane proteins. We provide an overview of approaches to optimize the expression plasmid, host cell and culture conditions, as well as the extraction and purification of functional protein for crystallization trials in preparation for structural studies.