5 resultados para predictive regression

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bayesian analysis of neural networks is difficult because the prior over functions has a complex form, leading to implementations that either make approximations or use Monte Carlo integration techniques. In this paper I investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis to be carried out exactly using matrix operations. The method has been tested on two challenging problems and has produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some circumstances, there may be no scientific model of the relationship between X and Y that can be specified in advance and indeed the objective of the investigation may be to provide a ‘curve of best fit’ for predictive purposes. In such an example, the fitting of successive polynomials may be the best approach. There are various strategies to decide on the polynomial of best fit depending on the objectives of the investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The techniques associated with regression, whether linear or non-linear, are some of the most useful statistical procedures that can be applied in clinical studies in optometry. 2. In some cases, there may be no scientific model of the relationship between X and Y that can be specified in advance and the objective may be to provide a ‘curve of best fit’ for predictive purposes. In such cases, the fitting of a general polynomial type curve may be the best approach. 3. An investigator may have a specific model in mind that relates Y to X and the data may provide a test of this hypothesis. Some of these curves can be reduced to a linear regression by transformation, e.g., the exponential and negative exponential decay curves. 4. In some circumstances, e.g., the asymptotic curve or logistic growth law, a more complex process of curve fitting involving non-linear estimation will be required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate in silico identification of T-cell epitopes is a critical step in the development of peptide-based vaccines, reagents, and diagnostics. It has a direct impact on the success of subsequent experimental work. Epitopes arise as a consequence of complex proteolytic processing within the cell. Prior to being recognized by T cells, an epitope is presented on the cell surface as a complex with a major histocompatibility complex (MHC) protein. A prerequisite therefore for T-cell recognition is that an epitope is also a good MHC binder. Thus, T-cell epitope prediction overlaps strongly with the prediction of MHC binding. In the present study, we compare discriminant analysis and multiple linear regression as algorithmic engines for the definition of quantitative matrices for binding affinity prediction. We apply these methods to peptides which bind the well-studied human MHC allele HLA-A*0201. A matrix which results from combining results of the two methods proved powerfully predictive under cross-validation. The new matrix was also tested on an external set of 160 binders to HLA-A*0201; it was able to recognize 135 (84%) of them.