3 resultados para precious metals
em Aston University Research Archive
Resumo:
The Haloclean process, a rotary kiln process for pyrolysis, developed by researchers at the Forschungszentrum Karlsruhe, Germany makes it possible to recover copper and precious metals from the scrap, ready for recycling. Pyrolysis neatly turns brominated electronic scrap plastics into recyclable copper and methanol feedstock while removing the halogens. The process has demonstrated its ability to recycle brominated electronic scrap in extensive parametric studies. A method suitable for the selective production of HBr in the presence of chlorine is the treatment of the pyrolysis oils with molten polypropylene. This treatment is offers the possibility to use the gas and liquid fraction from pyrolysis of electronic scrap as fossil fuel substitute in copper smelter processes or as feedstock for methanol production via gasification.
Resumo:
In order to study the effect of washcoat composition on lean NOx trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of La-stabilized CeO2 (5 wt% La2O3) or CeO2-ZrO2 (Ce:Zr = 70:30) were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that aging resulted in deterioration of the NOx storage, NOx release and NOx reduction functions, whereas the observation of lean phase NO2 slip for all of the aged catalysts indicated that LNT performance was not limited by the kinetics of NO oxidation. After aging, all of the catalysts showed increased selectivity to NH3 in the temperature range 250–450 °C. TEM, H2 chemisorption, XPS and elemental analysis data revealed two main changes which can explain the degradation in LNT performance. First, residual sulfur in the catalysts, present as BaSO4, decreased catalyst NOx storage capacity. Second, sintering of the precious metals in the washcoat was observed, which can be expected to decrease the rate of NOx reduction. Additionally, sintering is hypothesized to result in segregation of the precious metal and Ba phases, resulting in less efficient NOx spillover from Pt to Ba during NOx adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NOx spillover during catalyst regeneration. Spectacular improvement in LNT durability was observed for catalysts containing CeO2 or CeO2-ZrO2 relative to their non-ceria containing analog. This was attributed to (i) the ability of ceria to participate in NOx storage/reduction as a supplement to the main Ba NOx storage component; (ii) the fact that Pt and CeO2(-ZrO2) are not subject to phase segregation; and (iii) the ability of ceria to trap sulfur, resulting in decreased sulfur accumulation on the Ba component.
Resumo:
Pyrolytic recycling of materials for electronics and automotive is attractive because of the possibility of recovery of fuel and of precious metals from printed circuit. Due to the complexity of their composition an appropriate pre-treatment has to be performed in order to limit the evolution of dangerous halogen containing compounds which strongly impair the fuel quality. An advantageous pyrolysis approach implies the attempt of mineralisation of the organic bromine to the not volatile and harmless inorganic form using strong bases such as NaOH and KOH to reduce the amount of volatile and increasing the residue. The char stability is greatly variable depending on the substrate. Mg(OH)2 and Ca(OH)2 behave in a similar manner but to a lower extent. Carbonates and reducing agent such as LiAlH have been tested as well and their ability to scavenge bromine is discussed in terms of effectiveness and mechanism.