1 resultado para porous space

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous tin films as anode for lithium-ion batteries are electrodeposited on graphite paper. Homogeneous tin films with significant void space accommodate the volume change during tin lithiation/delithiation. Through adjusting the electrodeposition currents and time, the morphologies and void space of tin films on graphite paper are controllable. At fixed electrodeposition current densities, the prolonged electrodeposition time plays the role in growing big tin particles and resulting the disappearance of void space among tin particles. The increased electrodeposition current plays the role to increase the quantity of tin seeds in thickness of tin film, and the void space among tin particles remains but the thick film limits its electrochemical performance. The tin films electrodeposited at an optimized current densities and for an optimized electrodeposition time, present the best electrochemical performance, because the tin nanoparticles are well dispersed on graphite substrate including void space. The tin film electrodeposited at 0.2 A cm-2 for 2 min shows the capacity of 1.0 mAh cm-2 after 50 charge/discharge cycles. The void space of tin film is very important for the best capacity and cyclic ability. The metallic tin film produced at 0.4 A cm-2 for 3 min remains the uniform and microporous structure after charge/discharge for 50 cycles.