2 resultados para polymyxin B

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is the most common autosomal recessive disorder affecting Caucasian populations. The pathophysiology of this disorder predisposes the lungs of affected patients to chronic infection, typically by Pseudomonas aeruginosa, which is the main cause of morbidity and mortality. Recently, attention has focused on aerosolised polymyxins, which are given prophylactically in an effort to limit infection and subsequent lung damage. This class of antimicrobial compounds is highly active against P. aeruginosa and possess the advantage that resistance rarely develops. However, the rapid lung clearance of antibiotics is a well documented phenomenon and it was postulated that polymyxin treatment could be further improved by liposomal encapsulation. As part of the development of liposomal polymyxin B, analytical methodology (radiolabelling, HPLC and protein assay) applicable to liposomal formulations was established. Liposomes were prepared by the dehydration-rehydration method and encapsulation efficiencies were determined for a number of phospholipid compositions. Vesicles were characterised with respect to size, zeta potential, morphology and release characteristics. The surface hydrophobicity of vesicles was quantified by hydrophobic interaction chromatography and it was found that this method produced comparable results to techniques conventionally used to assess this property. In vivo testing of liposomal polymyxins demonstrated that encapsulation successfully prevented the rapid pulmonary clearance of PXB. Antimicrobial activity of liposomal formulations was quantified and found to be dependent on both the vesicle surface characteristics and their release profile. Investigation of the interaction of PXB with lipopolysaccharide was undertaken and results demonstrated that PXB caused significant structural distortion of the lipid A region. This may be sufficient to abrogate the potentiating action of LPS in the inflammatory cascade.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth of Pseudomonas aeruginosa 6750 as a biofilm was investigated using a novel system based on that of Gilbert et al (1989). The aim was to test the effect of controlled growth of the organism on antibiotic susceptibility and examine the survival of the organism as a biofilm. During the investigations it became clear that, because of the increasing growth of P.aeruginosa and production of exopolysaccharide, a growth rate controlled monolayer could not be achieved and so the method was not used further. The data, however, showed that there was an increase in the smooth colony type of the organism during growth. Investigations were focused on the survival of P.aeruginosa in batch and chemostat studies. Survival or percentage culturability, as measured by total and colony count ratio, was found to decrease both in extended batch culture and for chemostat cells with decreasing growth rate. Extended batch culture, however, did not exhibit further increases in resistance to ciprofloxacin and polymyxin B. Survival was also measured using other parameters namely the direct viable count, vital staining, effect of temperature downshift and measurement of lag. In batch culture, the most notable change was a decrease in cell size along the growth curve. This was accompanied by an increase in the cellular protein content. Protein per volume was calculated from the data which showed a marked increase in batch culture, which was not demonstrated for chemostat cells with decreasing growth rate. Outer membrane protein profiles were obtained for batch and chemostat cells. An LPS profile of batch culture cells was also demonstrated. In general, there was little difference in the outer membrane protein profiles of cells from early and late stationary phases.The result of the LPS profile showed that there appeared to be an increase in the B-band of the region of the LPS in the older stationary phase cultures.