20 resultados para polymeric precursors

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the results of research into the connections between transaction attributes and buyer-supplier relationships (BSRs) in advanced manufacturing technology (AMT) acquisition and implementation. The investigation began by examining the impact of the different patterns of BSR on the performance of the AMT acquisition. In understanding the phenomena, the study drew upon and integrated the literature of transaction cost economics theory, BSRs, and AMT, and used this as the basis for a theoretical framework and hypotheses development. This framework was then empirically tested using data that were gathered through a questionnaire survey with 147 companies and analyzed using a structural equation modeling technique. The results of the analysis indicated that the higher the level of technological specificity and uncertainty, the more firms are likely to engage in a stronger relationship with technology suppliers. However, the complexity of the technology being implemented was associated with BSR only indirectly through its association with the level of uncertainty (which has a direct impact upon BSR). The analysis also provided strong support for the premise that developing strong BSR could lead to an improved performance in acquiring and implementing AMT. The implications of the study are offered for both the academic and practitioner audience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of fluorescent molecularly imprinted polymers has been prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. Such polymers would have the possibility to form the sensing element in a high-throughput assay for the prediction of CYP2D6 affinity. The imprinted polymers possessed binding-dependent fluorescence. They re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One polymer in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from a drug panel. © 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of group 16 heterocycles with organometallic reagents are described. Thiophenes have been used as models for organic sulfur in coal and their reactivity towards triiron dodecacarbonyl has been investigated. Reaction of unsubstituted thiophene with Fe3(CO)12 results in desulfurisation of the heterocycle, with the organic fragment being recovered in the form of the ferrole, C4H4.Fe2(CO)6. In addition a novel organometallic compound of iron is isolated, the formula of which is shown to be C4H4.Fe3(CO)8. Bezothiophene reacts with Fe3(CO)12 to yield benzothiaferrole, C8H6S.Fe2(CO)6, in which the sulfur is retained in the heterocycle. Dibenzothiophene, a more accurate model for organic sulfur in coal, displays no reactivity towards the iron carbonyl, suggesting that the more condensed systems will desulfurise less readily. Microwave methodology has been successful in accelerating the reactions of thiophenes with Fe3(CO)12. However, reaction of benzothiophene does not proceed to the desulfurisation stage while dibenzothiophene is unreactive even under microwave conditions. Tellurophenes (Te analogues of thiophenes) are shown to mimic the behaviour of thiophenes towards certain organometallic reagents with the advantage that their greater reactivity enables recovery of products in higher yields. Hence, reaction of tellurophene with Fe3(CO)12 again affords the ferrole but with an almost ten-fold increase in yield over thiophene. More significantly, dibenzotellurophene is also detellurated by the iron carbonyl affording the previously inaccessible dibenzoferrole, C12H8.Fe2(CO)6, thereby demonstrating the mechanistic feasibility of dechalcogenation of the more condensed aromatic molecules. The potential of tellurium heterocycles to act as precursors for novel organometallics is also recognised owing to the relatively facile elimination of the heteroatom from these systems. Thus, 2-telluraindane reacts with Fe3(CO)12 to yield a novel organometallic compound of formula C16H16.Fe(CO)3, arising from the unsymmetric dimerisation of two organic fragments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various 2,2,6,6-tetramethyl piperidines and their N-alkyl derivatives of stable nitroxyl radical precursors containing acrylic(s) and methacrylic(s) groups were reactively processed in the presence of a peroxide as bound-antioxidant masterbatches for polyolefin stabilisation. It was found that grafting of the antioxidant monomers onto the polymer backbone was inevitably in competition with homopolymerisation of the monomers as well as melt degradation of the polymer and other side reactions. As previously reported, binding efficiency of bisacrylic nitroxyl precursor was maximum due to formation of unextractable homopolymer of the antioxidant. On the other hand, the binding efficiency of monoacrylic derivatives was low and the homopolymers were found extractable, which suggests that the bound monoacrylic derivatives are entirely grafted onto the polyolefin backbone. Application of bis and tri-functional coagents gave improved binding efficiency of the monoacrylic monomers. This may be due to copolymerisation of the antioxidants with the coagents and grafting of the copolymers onto the polymer backbone. Comparison of photostabilising activity of the fully extracted bound antioxidants to those of the corresponding unbound analogous showed lower results for the former. However, thermal stabilising activity of the bound antioxidants was higher than that of the unbound analogous due to better substantivity. Analysis using physical techniques and GPC for molecular weight distribution of masterbatches containing the bound monoacrylic antioxidants showed formation of high molecular weight products. Model reaction of a secondary amine derivative in liquid hydrocarbon and analysis of the product using FTIR and NMR spectroscopy indicated a possibility of side reaction, i.e. involvement of the amine active group (>N-H) of the antioxidant in the binding process to form the high molecular weight product. Implementation of various N-alkylated derivatives did not inhibit the side reaction. The photostabilising activity of the bound-antioxidants can be improved when applied in conjunction with small amounts of a benzophenone uv-stabiliser. The synergistic stabilising activity, however, was diminished when the uv-stabiliser was removed from the system during the service time. Nitroxyl precursors containing methacrylic group(s) gave lower binding efficiency than the corresponding acrylic derivatives. Reversible deploymerisation of the grafted methacrylic antioxidants may be responsible for this. Bis and tris-acrylic coagents improved the binding efficiency, and the presence of methacrylic group improved stabilising activity of the antioxidants. N-methyl derivatives were found to exhibit better stabilising activity than their parent secondary amine derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecularly imprinted polymers (MIPs) are crosslinked polymers containing bespoke functionalised cavities arising from the inclusion of template molecules in the polymerisation mixture and their later extraction. When the polymers are prepared functional polymerisable monomers are included which become part of the polymer matrix and serve to decorate the cavities with functionality appropriate to the template molecules. Overall, binding sites are created which have a memory for the template both in terms of shape and matching functionality. Fluorescent molecularly imprinted polymers have the benefit of a fluorophore in their cavities that may respond to the presence of bound test compound by a change in their fluorescence output. The work presented falls into three main areas. A series of fluorescent MIPs was prepared with a view to generating material capable of mimicking the binding characteristics of the metabolically important cytochrome isoform CYP2D6. The MIPs re-bound their templates and various cross-reactivities were encountered for test compound/drug recognition. One MIP in particular exhibited a rational discrimination amongst the related synthetic templates and was reasonably successful in recognising CYP2D6 substrates from the drug set tested. In order to give some insights into binding modes in MIPs, attempts were made to produce functional monomers containing two or more fluorophores that could be interrogated independently. A model compound was prepared which fitted the dual-fluorophore criteria and which will be the basis for future incorporation into MIPs. A further strand to this thesis is the deliberate incorporation of hydrophobic moieties into fluorescent functional monomers so that the resulting imprinted cavities might be biomimetic in their impersonation of enzyme active sites. Thus the imprinted cavities had specific hydrophobic regions as well as the usual polar functionality with which to interact with binding test compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several copolymers of linear polystyrene were prepared for evaluation as soluble polymeric supports for organic synthesis. These polymers were utilized for the synthesis of ?2-isoxazoline compounds. The target compounds were synthesized via 1,3-dipolar cycloaddition reactions between polymer bound alkenes and nitrile oxides generated in situ from their corresponding aldoximes. The cleaved ?2-isoxazoline compounds were tested for biological activity against Mycobacterium fortuitum. To compare the success of these linear polystyrene copolymers, some of the ?2-isoxazoline compounds synthesized on soluble polymeric supports were also prepared via traditional crosslinked polymer supports. The polymer-bound ?2-isoxazolines were also tested for antimicrobial activity. In addition attempts were made to prepare polymers containing the ?2-isoxazolines but anchored by non-hydrolysable bonds. Although the copolymers of polystyrene gave good loading capacity in mmol/g, and being soluble in chlorinated solvents it was possible to monitor the reactions by 1H NMR spectroscopy, the cleavage of the polymer bound products proved to be quite troublesome. Product purification was not as straightforward as it was anticipated. Isolation of the cleaved target compounds proved to be time consuming and laborious when compared to the traditional organic synthesis and solid phase organic synthesis (SPOS). Polymer-bound ?2-isoxazolines close to the polymer backbone exhibited some biological activity against Staphylococcus aureus. Polymers with substitution at the para-position of the aryl substituent at position 3 of isoxazoline ring showed antimicrobial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems associated with x-ray-transparent denture base are defined and conventional approaches to their solution are assessed. Consideration of elemental absorption parameters leads to the postulation that atoms such as zinc, and bromine, may be effective radiopacifiers over at least part of the clinical x-ray spectrum. These elements had hitherto been considered too light to be effective. Investigation of copolymers of methylmethacrylate and p-bromostyrene revealed no deleterious effects arising from the aromatically brominated monomer (aliphatic bromination caused UV destabilisation). For effective x-ray absorption a higher level of bromination would be necessary, but the expense of suitable compounds made further study unjustifiable. Incorporation of zinc atoms into the polymer was accomplished by copolymerisation of zinc acrylate with methylmethacrylate in solution. At high zinc levels this produced a powder copolymer convenient for addition to dental polymers in the dough moulding process. The resulting mouldings showed increasing brittleness at high loadings of copolymer. Fracture was shown to be through the powder particles rather than around them, indicating the source of weakness to be in the internal structure of the copolymer. The copolymer was expected to be cross-linked through divalent zinc ions and its insolubility and infusibility supported this. Cleavage of the ionic cross links with formic acid produced a zinc-free linear copolymer of high molecular weight. Addition of low concentrations of acrylic acid to the dough moulding monomer appeared to 'labilise' the cross links producing a more homogeneous moulding with adequate wet strength. Toxicologically the zinc-containing materials are satisfactory and though zinc is extracted at a measurable rate in an aqueous system, this is very small and should be acceptable over the life of a denture. In other respects the composite is quite satisfactory and though a marketable product is not claimed the system is considered worthy of further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High strength, high modulus carbon fibres are becoming increasingly important as high performance engineering materials. This thesis describes how they may be prepared by heat treatment from filaments spun from polyacrylonitrile and its copolymers. The chemistry of the first stages of heat treatment is very important in controlling the mechanical properties of the carbonised product. A cyclisation reaction has been found to be responsible for the relatively high thermal stability of pyrolysed polyacrylonitrile, but without oxidation the fibres degrade and fuse. An initial oxidation stage is, therefore, essential to the preparation of fibre of high orientation. The cyclised product of pyrolysis is probably a poly 1,4 dihydropiridine and oxidation converts this to aromatic structures, and cyclised structures containing carbonyl and other oxygenated groups. Oxidation is found to assist the carbon fibre preparation process, by producing a product which condenses at an earlier stage of heat treatment, before fusion can occur. Carbon fibre strength and modulus are dependent upon producing a highly oriented crystal structure. While oxidation of the polymer stabilises the fibre so as to prevent disorientation, further large increases in orientation, with a commensurate improvement in strength and modulus, can be obtained by stretching at temperatures above 1,700 °C. This process is analogous to the way fibre orientation is increased by the stretching of the precursor. A lamellar graphite structure can be created in high temperature fibre, by carefully controlling the degree of oxidation. This type of graphite can produce very high values of Young's modulus. More often, however, graphite fibre has a fibrillar fine structure, which is explicable in terms of continuous graphite ribbons. A ribbon model is the most satisfactory representation of the structure of carbon fibre, as it explains the mechanism of the development of long range order and the variation of Young's modulus with crystalline preferred orientation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research project is to evaluate whether or not pullulan films are suitable to buccal drug delivery of a phosphodiesterase5 (PDE5) inhibitor yonkenafil, which was discovered in our research group and currently is under phase II clinical trial for treatment of erectile dysfunction. Variable formulations of pullulan films were designed and the films were prepared. Mechanical properties of the films, in vitro drug release and polymer dissolution, in vitro drug penetration through porcine esophageal mucosa were investigated. The plasticization effects of solvents, polyols and acids to the films were studied by tensile test, and differential scanning calorimetry, thermogravimetric analysis, fourier transform-infrared, scanning electron microscopy, optical microscopy was applied to analyse the structure and chemical-bonding between pullulan and the additives within the films. Release mathematics models were used in the study of the mechanism of drug releases and polymer dissolutions. Ethanol, menthol, fatty acids, and sodium dodecyl sulphate were employed as penetration enhancers to pretreat the tissue. Various plasticizers and acids were applied into the films and the result showed polyethylene glycol 400 and 600 had the excellent plasticization effect on the drug-free pullulan films, while lactic acid was the best plasticizer for the drug-loaded films. Both PEG400 and lactic acid had a great effect on the drug release from the films in vitro, and all the results indicated that the hydroxyl and carboxyl groups of pullulan and the additives influenced the mechanical properties of the films significantly, and also altered drug release mechanisms. Ethanol shows the greatest enhancing ability on the drug permeation through the porcine esophageal mucosa. A possible mechanism for this is that ethanol interferes with the structure of the lipids in the mucosa, resulting in increased partitioning of the drug into the membrane.