29 resultados para polymer performance
em Aston University Research Archive
Resumo:
Polymer modified cements and mortars have become popular for use as patch repair materials. General evidence suggests that these materials offer considerable improvements compared to traditional mortars although the mechanisms for this are not fully understood. This work elucidates the factors which govern some properties and performance of different polymer systems. In view of the wide range of commercial systems available, investigations concentrated on the use of three of the most commonly available groups of polymers. These were: (1) Styrene Butadiene Rubber (SBR), (2) Acrylics and, (3) Ethylene Vinyl Acetates (EVA). The later two were in the form of both emulsions and redispersible powders. Experiments concentrated on: (1) Rheological behaviour of polymer modified cement pastes; (2) Workability of polymer modified mortars; (3) Influence of curing conditions on the pore size distribution and diffusion of chloride ions; (4) Bond strength of polymer modified cement and mortar patches; and (5) Microscopic examination and semi-quantitative analyses of the bulk and interfacial microstructures. The following main conclusions were reached: (1) The addition of polymer emulsions have a considerable influence on the workability of fresh cement pastes, the extent of this depending on the type of system used. (2) The rheological parameters of fresh polymer modified mortars can be established using a two-point workability test which may be used when comparing the properties of different systems at constant workability. (3) Curing conditions affect the properties of polymer modified systems and a wet/dry curing regime was essential for good adhesion of these materials to mortar substrates. (4) In contrast, the wet/dry curing regime resulted in a curing affected zone at the surface of patch materials. This can result in a much coarser pore structure and enhanced diffusion of e.g. chloride ions. (5) The microstructure of polymer modified systems was very different compared with the unmodified cement/mortar and varied depending on curing conditions.
Resumo:
Liquid-level sensing technologies have attracted great prominence, because such measurements are essential to industrial applications, such as fuel storage, flood warning and in the biochemical industry. Traditional liquid level sensors are based on electromechanical techniques; however they suffer from intrinsic safety concerns in explosive environments. In recent years, given that optical fiber sensors have lots of well-established advantages such as high accuracy, costeffectiveness, compact size, and ease of multiplexing, several optical fiber liquid level sensors have been investigated which are based on different operating principles such as side-polishing the cladding and a portion of core, using a spiral side-emitting optical fiber or using silica fiber gratings. The present work proposes a novel and highly sensitive liquid level sensor making use of polymer optical fiber Bragg gratings (POFBGs). The key elements of the system are a set of POFBGs embedded in silicone rubber diaphragms. This is a new development building on the idea of determining liquid level by measuring the pressure at the bottom of a liquid container, however it has a number of critical advantages. The system features several FBG-based pressure sensors as described above placed at different depths. Any sensor above the surface of the liquid will read the same ambient pressure. Sensors below the surface of the liquid will read pressures that increase linearly with depth. The position of the liquid surface can therefore be approximately identified as lying between the first sensor to read an above-ambient pressure and the next higher sensor. This level of precision would not in general be sufficient for most liquid level monitoring applications; however a much more precise determination of liquid level can be made by linear regression to the pressure readings from the sub-surface sensors. There are numerous advantages to this multi-sensor approach. First, the use of linear regression using multiple sensors is inherently more accurate than using a single pressure reading to estimate depth. Second, common mode temperature induced wavelength shifts in the individual sensors are automatically compensated. Thirdly, temperature induced changes in the sensor pressure sensitivity are also compensated. Fourthly, the approach provides the possibility to detect and compensate for malfunctioning sensors. Finally, the system is immune to changes in the density of the monitored fluid and even to changes in the effective force of gravity, as might be obtained in an aerospace application. The performance of an individual sensor was characterized and displays a sensitivity (54 pm/cm), enhanced by more than a factor of 2 when compared to a sensor head configuration based on a silica FBG published in the literature, resulting from the much lower elastic modulus of POF. Furthermore, the temperature/humidity behavior and measurement resolution were also studied in detail. The proposed configuration also displays a highly linear response, high resolution and good repeatability. The results suggest the new configuration can be a useful tool in many different applications, such as aircraft fuel monitoring, and biochemical and environmental sensing, where accuracy and stability are fundamental. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
A highly sensitive liquid level monitoring system based on microstructured polymer optical fiber Bragg grating (mPOFBG) array sensors is reported for the first time. The configuration is based on five mPOFBGs inscribed in the same fiber in the 850 nm spectral region, showing the potential to interrogate liquid level by measuring the strain induced in each mPOFBG embedded in a silicone rubber (SR) diaphragm, which deforms due to hydrostatic pressure variations. The sensor exhibits a highly linear response over the sensing range, a good repeatability, and a high resolution. The sensitivity of the sensor is found to be 98 pm/cm of water, enhanced by more than a factor of 9 when compared to an equivalent sensor based on a silica fiber around 1550 nm. The temperature sensitivity is studied and a multi-sensor arrangement proposed, which has the potential to provide level readings independent of temperature and the liquid density.
Resumo:
The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.
Resumo:
A review is given of general chromatographic theory, the factors affecting the performance of chromatographi c columns, and aspects of scale-up of the chromatographic process. The theory of gel permeation chromatography (g. p. c.) is received, and the results of an experimental study to optimize the performance of an analytical g.p.c. system are reported. The design and construction of a novel sequential continuous chromatographic refining unit (SCCR3), for continuous liquid-liquid chromatography applications, is described. Counter-current operation is simulated by sequencing a system of inlet and outlet port functions around a connected series of fixed, 5.1 cm internal diameter x 70 cm long, glass columns. The number of columns may be varied, and, during this research, a series of either twenty or ten columns was used. Operation of the unit for continuous fractionation of a dextran polymer (M. W. - 30,000) by g.p.c. is reported using 200-400 µm diameter porous silica beads (Spherosil XOB07S) as packing, and distilled water for the mobile phase. The effects of feed concentration, feed flow rate, and mobile and stationary phase flow rates have been investigated, by means of both product, and on-column, concentrations and molecular weight distributions. The ability to operate the unit successfully at on-column concentrations as high as 20% w/v dextran has been demonstrated, and removal of both high and low molecular weight ends of a polymer feed distribution, to produce products meeting commercial specifications, has been achieved. Equivalent throughputs have been as high as 2.8 tonnes per annum for ten columns, based on continuous operation for 8000 hours per annum. A concentration dependence of the equilibrium distribution coefficient, KD observed during continuous fractionation studies, is related to evidence in the literature and experimental results obtained on a small-scale batch column. Theoretical treatments of the counter-current chromatographic process are outlined, and a preliminary computer simulation of the SCCR3 unit t is presented.
Resumo:
The primary objective of this research was to examine the concepts of the chemical modification of polymer blends by reactive processing using interlinking agents (multi-functional, activated vinyl compounds; trimethylolpropane triacrylates {TRIS} and divinylbenzene {DVD}) to target in-situ interpolymer formation between immiscible polymers in PS/EPDM blends via peroxide-initiated free radical reactions during melt mixing. From a comprehensive survey of previous studies of compatibility enhancement in polystyrene blends, it was recognised that reactive processing offers opportunities for technological success that have not yet been fully realised; learning from this study is expected to assist in the development and application of this potential. In an experimental-scale operation for the simultaneous melt blending and reactive processing of both polymers, involving manual injection of precise reactive agent/free radical initiator mixtures directly into molten polymer within an internal mixer, torque changes were distinct, quantifiable and rationalised by ongoing physical and chemical effects. EPDM content of PS/EPDM blends was the prime determinant of torque increases on addition of TRIS, itself liable to self-polymerisation at high additions, with little indication of PS reaction in initial reactively processed blends with TRIS, though blend compatibility, from visual assessment of morphology by SEM, was nevertheless improved. Suitable operating windows were defined for the optimisation of reactive blending, for use once routes to encourage PS reaction could be identified. The effectiveness of PS modification by reactive processing with interlinking agents was increased by the selection of process conditions to target specific reaction routes, assessed by spectroscopy (FT-IR and NMR) and thermal analysis (DSC) coupled dichloromethane extraction and fractionation of PS. Initiator concentration was crucial in balancing desired PS modification and interlinking agent self-polymerisation, most particularly with TRIS. Pre-addition of initiator to PS was beneficial in the enhancement of TRIS binding to PS and minimisation of modifier polymerisation; believed to arise from direct formation of polystyryl radicals for addition to active unsaturation in TRIS. DVB was found to be a "compatible" modifier for PS, but its efficacy was not quantified. Application of routes for PS reaction in PS/EPDM blends was successful for in-situ formation of interpolymer (shown by sequential solvent extraction combined with FT-IR and DSC analysis); the predominant outcome depending on the degree of reaction of each component, with optimum "between-phase" interpolymer formed under conditions selected for equalisation of differing component reactivities and avoidance of competitive processes. This was achieved for combined addition of TRIS+DVB at optimum initiator concentrations with initiator pre-addition to PS. Improvements in blend compatibility (by tensiles, SEM and thermal analysis) were shown in all cases with significant interpolymer formation, though physical benefits were not; morphology and other reactive effects were also important factors. Interpolymer from specific "between-phase" reaction of blend components and interlinking agent was vital for the realisation of positive performance on compatibilisation by the chemical modification of polymer blends by reactive processing.
Resumo:
This work studies the development of polymer membranes for the separation of hydrogen and carbon monoxide from a syngas produced by the partial oxidation of natural gas. The CO product is then used for the large scale manufacture of acetic acid by reaction with methanol. A method of economic evaluation has been developed for the process as a whole and a comparison is made between separation of the H2/CO mixture by a membrane system and the conventional method of cryogenic distillation. Costs are based on bids obtained from suppliers for several different specifications for the purity of the CO fed to the acetic acid reactor. When the purity of the CO is set at that obtained by cryogenic distillation it is shown that the membrane separator offers only a marginal cost advantage. Cost parameters for the membrane separation systems have been defined in terms of effective selectivity and cost permeability. These new parameters, obtained from an analysis of the bids, are then used in a procedure which defines the optimum degree of separation and recovery of carbon monoxide for a minimum cost of manufacture of acetic acid. It is shown that a significant cost reduction is achieved with a membrane separator at the optimum process conditions. A method of "targeting" the properties of new membranes has been developed. This involves defining the properties for new (hypothetical -yet to be developed) membranes such that their use for the hydrogen/carbon monoxide separation will produce a reduced cost of acetic acid manufacture. The use of the targeting method is illustrated in the development of new membranes for the separation of hydrogen and carbon monoxide. The selection of polymeric materials for new membranes is based on molecular design methods which predict the polymer properties from the molecular groups making up the polymer molecule. Two approaches have been used. One method develops the analogy between gas solubility in liquids and that in polymers. The UNIFAC group contribution method is then used to predict gas solubility in liquids. In the second method the polymer Permachor number, developed by Salame, has been correlated with hydrogen and carbon monoxide permeabilities. These correlations are used to predict the permeabilities of gases through polymers. Materials have been tested for hydrogen and carbon monoxide permeabilities and improvements in expected economic performance have been achieved.
Resumo:
Purpose: The use of PHMB as a disinfectant in contact lens multipurpose solutions has been at the centre of much debate in recent times, particularly in relation to the issue of solution induced corneal staining. Clinical studies have been carried out which suggest different effects with individual contact lens materials used in combination with specific PHMB containing care regimes. There does not appear to be, however, a reliable analytical technique that would detect and quantify with any degree of accuracy the specific levels of PHMB that are taken up and released from individual solutions by the various contact lens materials. Methods: PHMB is a mixture of positively charged polymer units of varying molecular weight that has maximum absorbance wavelength of 236 nm. On the basis of these properties a range of assays including capillary electrophoresis, HPLC, a nickelnioxime colorimetric technique, mass spectrophotometry, UV spectroscopy and ion chromatography were assessed paying particular attention to each of their constraints and detection levels. Particular interest was focused on the relative advantage of contactless conductivity compared to UV and mass spectrometry detection in capillary electrophoresis (CE). This study provides an overview of the comparative performance of these techniques. Results: The UV absorbance of PHMB solutions, ranging from 0.0625 to 50 ppm was measured at 236 nm. Within this range the calibration curve appears to be linear however, absorption values below 1 ppm (0.0001%) were extremely difficult to reproduce. The concentration of PHMB in solutions is in the range of 0.0002–0.00005% and our investigations suggest that levels of PHMB below 0.0001% (levels encountered in uptake and release studies) can not be accurately estimated, in particular when analysing complex lens care solutions which can contain competitively absorbing, and thus interfering, species in the solution. The use of separative methodologies, such as CE using UV detection alone is similarly limited. Alternative techniques including contactless conductivity detection offer greater discrimination in complex solutions together with the opportunity for dual channel detection. Preliminary results achieved by TraceDec1 contactless conductivity detection, (Gain 150%, Offset 150) in conjunction with the Agilent capillary electrophoresis system using a bare fused silica capillary (extended light path, 50 mid, total length 64.5 cm, effective length 56 cm) and a cationic buffer at pH 3.2, exhibit great potential with reproducible PHMB split peaks. Conclusions: PHMB-based solutions are commonly associated with the potential to invoke corneal staining in combination with certain contact lens materials. However this terminology ‘PHMBbased solution’ is used primarily because PHMB itself has yet to be adequately implicated as the causative agent of the staining and compromised corneal cell integrity. The lack of well characterised adequately sensitive assays, coupled with the range of additional components that characterise individual care solutions pose a major barrier to the investigation of PHMB interactions in the lenswearing eye.
Resumo:
The internationally accepted Wolfson Heat Treatment Centre Engineering Group test was used to evaluate the cooling characteristics of the most popular commercial polymer quenchants: polyalkylene glycols, polyvinylpyrrolidones and polyacrylates. Prototype solutions containing poly(ethyloxazoline) were also examined. Each class of polymer was capable of providing a wide range of cooling rates depending on the product formulation, concentration, temperature, agitation, ageing and contamination. Cooling rates for synthetic quenchants were generally intermediate between those of water and oil. Control techniques, drag-out losses and response to quenching in terms of hardness and residual stress for a plain carbon steel, were also considered. A laboratory scale method for providing a controllable level of forced convection was developed. Test reproducibility was improved by positioning the preheated Wolfson probe 25mm above the geometric centre of a 25mm diameter orifice through which the quenchant was pumped at a velocity of 0.5m/s. On examination, all polymer quenchants were found to operate by the same fundamental mechanism associated with their viscosity and ability to form an insulating polymer-rich-film. The nature of this film, which formed at the vapour/liquid interface during boiling, was dependent on the polymer's solubility characteristics. High molecular weight polymers and high concentration solutions produced thicker, more stable insulating films. Agitation produced thinner more uniform films. Higher molecular weight polymers were more susceptible to degradation, and increased cooling rates, with usage. Polyvinylpyrrolidones can be cross-linked resulting in erratic performance, whilst the anionic character of polyacrylates can lead to control problems. Volatile contaminants tend to decrease the rate of cooling and salts to increase it. Drag-out increases upon raising the molecular weight of the polymer and its solution viscosity. Kinematic viscosity measurements are more effective than refractometer readings for concentration control, although a quench test is the most satisfactory process control method.
Resumo:
Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
Poly(styrene)-block-poly(2-vinyl pyridine)-block-poly(styrene) (PS-b-P2VP-b-PS) triblock copolymers were synthesised by anionic polymerisation. Thick films were cast from solution and their structure analysed by small angle X-ray scattering (SAXS). Longer annealing times led to more ordered structures whereas short evaporation times effectively "lock" the polymer chains in a disordered state by vitrification. Well-ordered structures not only provide an isotropic network, which reduces localised stress within the material, but are also essential for fundamental studies of soft matter because their activity on the molecular scale must be analysed and understood prior to their use in technological applications. Well-characterised PS-b-P2VP-b-PS materials have been coupled to a pH-oscillating reaction and their potential application as responsive actuators is discussed. This journal is © The Royal Society of Chemistry.
Resumo:
When exposed to high levels of strain, polymer optical fibre grating sensors recorded in poly(methyl methacrylate) based fibre often exhibit hysteresis in the response of their Bragg wavelength to strain. We demonstrate that the application of pre-tension and annealing of the polymer fibre can reduce this hysteresis when the fibre is suspended freely between two supports, but much better performance is obtained when the sensor is attached directly to a substrate. In this case, the hysteresis can be lessened by more than a factor of 12. © 2014 IOP Publishing Ltd.
Resumo:
We present a newly designed polymer light-emitting diode with a bandwidth of ∼350 kHz for high-speed visible light communications. Using this new polymer light-emitting diode as a transmitter, we have achieved a record transmission speed of 10 Mb/s for a polymer light-emitting diode-based optical communication system with an orthogonal frequency division multiplexing technique, matching the performance of single carrier formats using multitap equalization. For achieving such a high data-rate, a power pre-emphasis technique was adopted. © 2014 Optical Society of America.