133 resultados para polymer optical flber (POF)
em Aston University Research Archive
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
This thesis presents the fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in polymer optical fibre (POF). Possible fabrication techniques were discussed to fabricate FBGs in polymer optical fibre including a detailed description of the phase mask inscription technique used to fabricate FBGs in both single and multi mode microstructured polymer optical fibre (mPOF). Complementing the fabrication of polymer optical fibre Bragg gratings (POFBGs), a technique has been developed to permanently splice POF to silica optical fibre with the use of an optical adhesive. This allowed for the fabricated POFBGs to be characterised away from the optical table, allowing for application specific characterisation. Furthermore Bragg gratings have been fabricated in polymer POF with a Bragg response within the 800nm spectral region. Within this spectral region, POF predominantly manufactured from PMMA experiences considerably smaller attenuation losses when compared to the attenuation losses within the 1550nm spectral region. The effect of thermally annealing fabricated POFBGs has been studied. This included demonstrating the ability to tune the Bragg wavelength of a POFBG sensor to a desired wavelength. Thermal annealing has also been used to manufacture wavelength division multiplexed sensors with the use of a single phase mask. Finally POFBGs have been fabricated in Topas Cyclic Olefin Copolymer. Fabrication of Bragg gratings within this copolymer allowed for the first demonstration of near immunity to relative humidity whilst monitoring changes in temperature of the environment the POFBG sensor was in. Bragg gratings fabricated in the Topas copolymer demonstrated sensitivity to relative humidity which was 65 times less than that of a PMMA based POFBG sensor. This decrease in sensitivity has the potential to significantly reduce the potential of cross sensitivity to relative humidity whilst being employed to monitor measurands such as temperature and axial strain.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks.
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
Refractive index and structural characteristics of optical polymers are strongly influenced by the thermal history of the material. Polymer optical fibres (POF) are drawn under tension, resulting in axial orientation of the polymer molecular chains due to their susceptibility to align in the fibre direction. This change in orientation from the drawing process results in residual strain in the fibre and also affects the transparency and birefringence of the material (1-3). PMMA POF has failure strain as high as over 100%. POF has to be drawn under low tension to achieve this value. The drawing tension affects the magnitude of molecular alignment along the fibre axis, thus affecting the failure strain. The higher the tension the lower the failure stain will be. However, the properties of fibre drawn under high tension can approach that of fibre drawn under low tension by means of an annealing process. Annealing the fibre can generally optimise the performance of POF while keeping most advantages intact. Annealing procedures can reduce index difference throughout the bulk and also reduce residual stress that may cause fracture or distortion. POF can be annealed at temperatures approaching the glass transition temperature (Tg) of the polymer to produce FBG with a permanent blue Bragg wave-length shift at room temperature. At this elevated temperature segmental motion in the structure results in a lower viscosity. The material softens and the molecular chains relax from the axial orientation causing shrinking of the fibre. The large attenuation of typically 1dB/cm in the 1550nm spectral region of PMMA POF has limited FBG lengths to less than 10cm. The more expensive fluorinated polymers with lower absorption have had no success as FBG waveguides. Bragg grating have been inscribed onto various POF in the 800nm spectral region using a 30mW continuous wave 325nm helium cadmium laser, with a much reduced attenuation coefficient of 10dB/m (5). Fabricating multiplexed FBGs in the 800nm spectral region in TOPAS and PMMA POF consistently has lead to fabrication of multiplexed FBG in the 700nm spectral region by a method of prolonged annealing. The Bragg wavelength shift of gratings fabricated in PMMA fibre at 833nm and 867nm was monitored whilst the POF was thermally annealed at 80°C. Permanent shifts exceeding 80nm into the 700nm spectral region was attained by both gratings on the fibre. The large permanent shift creates the possibility of multiplexed Bragg sensors operating over a broad range. -------------------------------------------------------------------------------------------------------------------- 1. Pellerin C, Prud'homme RE, Pézolet M. Effect of thermal history on the molecular orientation in polystyrene/poly (vinyl methyl ether) blends. Polymer. 2003;44(11):3291-7. 2. Dvoránek L, Machová L, Šorm M, Pelzbauer Z, Švantner J, Kubánek V. Effects of drawing conditions on the properties of optical fibers made from polystyrene and poly (methyl methacrylate). Die Angewandte Makromolekulare Chemie. 1990;174(1):25-39. 3. Dugas J, Pierrejean I, Farenc J, Peichot JP. Birefringence and internal stress in polystyrene optical fibers. Applied optics. 1994;33(16):3545-8. 4. Jiang C, Kuzyk MG, Ding JL, Johns WE, Welker DJ. Fabrication and mechanical behavior of dye-doped polymer optical fiber. Journal of applied physics. 2002;92(1):4-12. 5. Johnson IP, Webb DJ, Kalli K, Yuan W, Stefani A, Nielsen K, et al., editors. Polymer PCF Bragg grating sensors based on poly (methyl methacrylate) and TOPAS cyclic olefin copolymer2011: SPIE.
Resumo:
The authors fabricated a demountable Ferrule connector/Physical contact connection between silica fiber and a polymer optical fiber (POF) containing a fiber Bragg grating. The use of a connector for POF grating sensors eliminates the limitations of ultraviolet glued connections and increases the ease with which the devices can be applied to real-world measurement tasks. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
The sensitivity of a fibre Bragg grating (FBG) sensor fabricated in polymer optical fibre (POF) to hydrostatic pressure was investigated for the first time. In this initial investigative work a reflected Bragg response of a FBG fabricated in multimode microstructured POF (MMmPOF) was monitored, whilst the hydrostatic pressure was increased up to 10MPa. Positive sensitivities were observed, meaning a positive wavelength shift to increasing pressure, as opposed to negative sensitivities monitored when using a FBG sensor fabricated in silica optical fibre. The FBG sensors fabricated in the MMmPOF gave fractional changes in wavelength and hence sensitivities of at least 64.05×10-6/MPa, which is some 25 times larger than the -2.50×10-6/MPa sensitivity of a FBG sensor fabricated in silica optical fibre that was measured in this work. Furthermore this work highlighted a decrease in sensitivity of the FBG sensor fabricated in the MMmPOF by some 50% by sealing the holes of the mPOF at the tip of the fibre with an adhesive. This offers the potential to tailor the response of the sensor to hydrostatic pressure.
Resumo:
Opto-acoustic imaging (OAI) shows particular promise for in-vivo biomedical diagnostics. Its applications include cardiovascular, gastrointestinal and urogenital systems imaging. Opto-acoustic endoscopy (OAE) allows the imaging of body parts through cavities permitting entry. The critical parameter is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions on the opportunities and challenges of applying this technology in biomedical applications.
Resumo:
The stress sensitivity of polymer optical fibre (POF) based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions is investigated. POF has received high interest in recent years due to its different material properties compared to its silica counterpart. Biocompatibility, a higher failure strain and the highly elastic nature of POF are some of the main advantages. The much lower Young’s modulus of polymer materials compared to silica offers enhanced stress sensitivity to POF based sensors which renders them great candidates for acoustic wave receivers and any kind of force detection. The main drawback in POF technology is perhaps the high fibre loss. In a lossless fibre the sensitivity of an interferometer is proportional to its cavity length. However, the presence of the attenuation along the optical path can significantly reduce the finesse of the Fabry-Perot interferometer and it can negatively affect its sensitivity at some point. The reflectivity of the two gratings used to form the interferometer can be also reduced as the fibre loss increases. In this work, a numerical model is developed to study the performance of POF based Fabry-Perot sensors formed by two uniform Bragg gratings with finite dimensions. Various optical and physical properties are considered such as grating physical length, grating effective length which indicates the point where the light is effectively reflected, refractive index modulation of the grating, cavity length of the interferometer, attenuation and operating wavelength. Using this model, we are able to identify the regimes in which the PMMA based sensor offer enhanced stress sensitivity compared to silica based one.
Resumo:
Polymer optical fibre (POF) is a relatively new and novel technology that presents an innovative approach for ultrasonic endoscopic applications. Currently, piezo electric transducers are the typical detectors of choice, albeit possessing a limited bandwidth due to their resonant nature and a sensitivity that decreases proportionally to their size. Optical fibres provide immunity from electromagnetic interference and POF in particular boasts more suitable physical characteristics than silica optical fibre. The most important of these are lower acoustic impedance, a reduced Young's Modulus and a higher acoustic sensitivity than single-mode silica fibre at both 1 MHz and 10 MHz. POF therefore offers an interesting alternative to existing technology. Intrinsic fibre structures such as Bragg gratings and Fabry-Perot cavities may be inscribed into the fibre core using UV lasers. These gratings are a modulation of the refractive index of the fibre core and provide the advantages of high reflectivity, customisable bandwidth and point detection. We present a compact in fibre ultrasonic point detector based upon a POF Bragg grating (POFBG) sensor. We demonstrate that the detector is capable of leaving a laboratory environment by using connectorised fibre sensors and make a case for endoscopic ultrasonic detection through use of a mounting structure that better mimics the environment of an endoscopic probe. We measure the effects of water immersion upon POFBGs and analyse the ultrasonic response for 1, 5 and 10 MHz.
Resumo:
Opto-acoustic imaging is a growing field of research in recent years, providing functional imaging of physiological biomarkers, such as the oxygenation of haemoglobin. Piezo electric transducers are the industry standard detector for ultrasonics, but their limited bandwidth, susceptibility to electromagnetic interference and their inversely proportional sensitivity to size all affect the detector performance. Sensors based on polymer optical fibres (POF) are immune to electromagnetic interference, have lower acoustic impedance and a reduced Young's Modulus compared to silica fibres. Furthermore, POF enables the possibility of a wideband sensor and a size appropriate to endoscopy. Micro-structured POF (mPOF) used in an interferometric detector has been shown to be an order of magnitude more sensitive than silica fibre at 1 MHz and 3 times more sensitive at 10 MHz. We present the first opto-acoustic measurements obtained using a 4.7mm PMMA mPOF Bragg grating with a fibre diameter of 130 μm and present the lateral directivity pattern of a PMMA mPOF FBG ultrasound sensor over a frequency range of 1-50 MHz. We discuss the impact of the pattern with respect to the targeted application and draw conclusions on how to mitigate the problems encountered.
Resumo:
We propose a remotely tuneable optical Bragg grating filter written in polymer optical fibre (POF). Fibre optical pumping in the fibre's absorption bands increases the fibre temperature, which causes a negative wavelength change of the POF Bragg grating. By choosing a proper pumping wavelength remote tuning of the optical filter can be readily realized without changing the gain of the optical signal.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
The production and characterization of narrow bandwidth fiber Bragg gratings (FBGs) in different spectral regions using polymer optical fibers (POFs) is reported. Narrow bandwidth FBGs are increasingly important for POF transmission systems, WDM technology and sensing applications. Long FBGs with resonance wavelength around 600-nm, 850-nm and 1550-nm in several types of polymer optical fibers were inscribed using a scanning technique with a short optical path. The technique allowed the inscription in relative short periods of time. The obtained 3-dB bandwidth varies from 0.22 down to 0.045 nm considering a Bragg grating length between 10 and 25-mm, respectively.
Resumo:
Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyser. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. The response to lateral force was finally investigated. As it induces birefringence in addition to the photo-induced one, an increase of the PDL and DGD values were noticed. © 2014 Copyright SPIE.