2 resultados para pollen and spores

em Aston University Research Archive


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clostridium difficile is a bacterial healthcare-associated infection, which houseflies Musca domestica may transfer due to their synanthropic nature. The aims of this thesis were to determine the ability of M. domestica to transfer C. difficile mechanically and to collect and identify flying insects in UK hospitals and classify any associated bacteria. M. domestica exposed to independent suspensions of vegetative cells and spores of C. difficile were able to mechanically transfer the bacteria on to agar for up to 4 hours following exposure. C. difficile could be recovered from fly excreta for 96hrs and was isolated from the M. domestica alimentary canal. Also confirmed was the carriage of C. difficile by M. domestica larvae, although it was not retained in the pupae or in the adults that subsequently developed. Flying insects were collected from ultra-violet light flytraps in hospitals. Flies (order Diptera) were the most commonly identified. Chironomidae were the most common flies, Calliphora vicina were the most common synanthropic fly and ‘drain flies’ were surprisingly numerous and represent an emerging problem in hospitals. External washings and macerates of flying insects were prepared and inoculated onto a variety of agars and following incubation bacterial colonies identified by biochemical tests. A variety of flying insects, including synanthropic flies (e.g. M. domestica and C. vicina) collected from UK hospitals harboured pathogenic bacteria of different species. Enterobacteriaceae were the group of bacteria most commonly isolated, followed by Bacillus spp, Staphylococci, Clostridia, Streptococci and Micrococcus spp. This study highlights the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals. Also illustrated is the potential for flying insects to contribute to environmental persistence and spread of other pathogenic bacteria in hospitals and therefore the need to implement pest control as part of infection control strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background - Clostridium difficile is a bacterial healthcare-associated infection that may be transferred by houseflies (Musca domestica) due to their close ecological association with humans and cosmopolitan nature. Aim - To determine the ability of M. domestica to transfer C. difficile both mechanically and following ingestion. Methods - M. domestica were exposed to independent suspensions of vegetative cells and spores of C. difficile, then sampled on to selective agar plates immediately postexposure and at 1-h intervals to assess the mechanical transfer of C. difficile. Fly excreta was cultured and alimentary canals were dissected to determine internalization of cells and spores. Findings - M. domestica exposed to vegetative cell suspensions and spore suspensions of C. difficile were able to transfer the bacteria mechanically for up to 4 h upon subsequent contact with surfaces. The greatest numbers of colony-forming units (CFUs) per fly were transferred immediately following exposure (mean CFUs 123.8 +/− 66.9 for vegetative cell suspension and 288.2 +/− 83.2 for spore suspension). After 1 h, this had reduced (21.2 +/− 11.4 for vegetative cell suspension and 19.9 +/− 9 for spores). Mean C. difficile CFUs isolated from the M. domestica alimentary canal was 35 +/− 6.5, and mean C. difficile CFUs per faecal spot was 1.04 +/− 0.58. C. difficile could be recovered from fly excreta for up to 96 h. Conclusion - This study describes the potential for M. domestica to contribute to environmental persistence and spread of C. difficile in hospitals, highlighting flies as realistic vectors of this micro-organism in clinical areas.