6 resultados para pneumatic

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is developed for the general pneumatic tyre. The model will permit the investigations of tyre deformations produced by arbitrary external loading, and will enable estimates to be made of the distributions of applied and reactive forces. The principle of Finite Elements is used to idealise the composite tyre structure, each element consisting of a triangle of double curvature with varying thickness. Large deflections of' the structure are accomodated by the use of an iterative sequence of small incremental steps, each of' which obeys the laws of linear mechanics. The theoretical results are found to compare favourably with the experimental test data obtained from two different types of ttye construction. However, limitations in the discretisation process has prohibited accurate assessments to be made of stress distributions in the regions of high stress gradients ..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to design, construct, test and operate a novel circulating fluid bed fast pyrolysis reactor system for production of liquids from biomass. The novelty lies in incorporating an integral char combustor to provide autothermal operation. A reactor design methodology was devised which correlated input parameters to process variables, namely temperature, heat transfer and gas/vapour residence time, for both the char combustor and biomass pyrolyser. From this methodology a CFB reactor was designed with integral char combustion for 10 kg/h biomass throughput. A full-scale cold model of the CFB unit was constructed and tested to derive suitable hydrodynamic relationships and performance constraints. Early difficulties encountered with poor solids circulation and inefficient product recovery were overcome by a series of modifications. A total of 11 runs in a pyrolysis mode were carried out with a maximum total liquids yield of 61.50% wt on a maf biomass basis, obtained at 500°C and with 0.46 s gas/vapour residence time. This could be improved by improved vapour recovery by direct quenching up to an anticipated 75 % wt on a moisture-and-ash-free biomass basis. The reactor provides a very high specific throughput of 1.12 - 1.48 kg/hm2 and the lowest gas-to-feed ratio of 1.3 - 1.9 kg gas/kg feed compared to other fast pyrolysis processes based on pneumatic reactors and has a good scale-up potential. These features should provide significant capital cost reduction. Results to date suggest that the process is limited by the extent of char combustion. Future work will address resizing of the char combustor to increase overall system capacity, improvement in solid separation and substantially better liquid recovery. Extended testing will provide better evaluation of steady state operation and provide data for process simulation and reactor modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An apparatus was developed to project spinning golf balls directly onto golf greens. This employed a modified baseball/practice machine with two counter-rotating pneumatic wheels. The speed of the wheels could be varied independently allowing backspin to be given to the ball. The ball was projected into a darkened enclosure where the motion of the ball before and after impacting with the turf was recorded using a still camera and a stroboscope. The resulting photographs contained successive images of the ball on a single frame of film. The apparatus was tested on eighteen golf courses resulting in 721 photographs of impacts. Statistical analysis was carried out on the results of the photographs and from this, two types of green emerged. On the first, the ball tended to rebound with topspin, while on the second, the ball retained backspin after impact if the initial backspin was greater than about 350 rads-1. Eleven tests were devised to determine the characteristics of greens and statistical techniques were used to analyse the relationships between these tests. These showed the effects of the green characteristics on ball/turf impacts. It was found that the ball retained backspin on greens that were freely drained and had less than 60% of Poa annua (annual meadow grass) in their swards. Visco-elastic models were used to simulate the impact of the ball with the turf. Impacts were simulated by considering the ball to be rigid and the turf to be a two layered system consisting of springs and dampers. The model showed good agreement with experiment and was used to simulate impacts from two different shots onto two contrasting types of green.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drying is a major and challenging step in the pre-treatment of biomass for production of second generation synfuels for transport. The biomass feedstocks are mostly wet and need to be dried from 30 to 60 wt% moisture content to about 10-15 wt%. The present survey aims to define and evaluate a few of the most promising optimised concepts for biomass pre-treatment scheme in the production of second generation synfuels for transport. The most promising commercially available drying processes were reviewed, focusing on the applications, operational factors and emissions of dryers. The most common dryers applied now for biomass in bio-energy plants are direct rotary dryers, but the use of steam drying techniques is increasing. Steam drying systems enable the integration of the dryer to existing energy sources. In addition to integration, emissions and fire or explosion risks have to be considered when selecting a dryer for the plant. In steam drying there will be no gaseous emissions, but the aqueous effluents need often treatment. Concepts for biomass pre-treatment were defined for two different cases including a large-scale wood-based gasification synfuel production and a small-scale pyrolysis process based on wood chips and miscanthus bundles. For the first case a pneumatic conveying steam dryer was suggested. In the second case the flue gas will be used as drying medium in a direct or indirect rotary dryer.