9 resultados para plasma-modified porous polyethylene

em Aston University Research Archive


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The involvement of oxidatively modified low density lipoprotein (LDL) in the development of CHD is widely described. We have produced two antibodies, recognizing the lipid oxidation product malondialdehyde (MDA) on whole LDL or ApoB-100. The antibodies were utilized in the development of an ELISA for quantitation of MDA-LDL in human plasma. Intra- and inter-assay coefficients of variation (% CV) were measured as 4.8 and 7.7%, respectively, and sensitivity of the assay as 0.04 μg/ml MDA-LDL. Recovery of standard MDA-LDL from native LDL was 102%, indicating the ELISA to be specific with no interference from other biomolecules. Further validation of the ELISA was carried out against two established methods for measurement of lipid peroxidation products, MDA by HPLC and F2-isoprostanes by GC-MS. Results indicated that MDA-LDL is formed at a later stage of oxidation than either MDA or F2- isoprostanes. In vivo analysis demonstrated that the ELISA was able to determine steady-state concentrations of plasma MDA-LDL (an end marker of lipid peroxidation). A reference range of 34.3 ± 8.8 μg/ml MDA-LDL was established for healthy individuals. Further, the ELISA was used to show significantly increased plasma MDA-LDL levels in subjects with confirmed ischemic heart disease, and could therefore possibly be of benefit as a diagnostic tool for assessing CHD risk. © 2003 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyethylene (a 1:1 blend of m-LLDPE and z-LLDPE) double layer silicate clay nanocomposites were prepared by melt extrusion using a twin screw extruder. Maleic anhydride grafted polyethylene (PEgMA) was used as a compatibiliser to enhance the dispersion of two organically modified monmorilonite clays (OMMT): Closite 15A (CL15) and nanofill SE 3000 (NF), and natural montmorillonite (NaMMT). The clay dispersion and morphology obtained in the extruded nanocomposite samples were fully characterised both after processing and during photo-oxidation by a number of complementary analytical techniques. The effects of the compatibiliser, the organoclay modifier (quartenary alkyl ammonium surfactant) and the clays on the behaviour of the nanocomposites during processing and under accelerated weathering conditions were investigated. X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), rheometry and attenuated reflectance spectroscopy (ATR-FTIR) showed that the nanocomposite structure obtained is dependent on the type of clay used, the presence or absence of a compatibiliser and the environment the samples are exposed to. The results revealed that during processing PE/clay nanocomposites are formed in the presence of the compatibiliser PEgMA giving a hybrid exfoliated and intercalated structures, while microcomposites were obtained in the absence of PEgMA; the unmodified NaMMT-containing samples showed encapsulated clay structures with limited extent of dispersion in the polymer matrix. The effect of processing on the thermal stability of the OMMT-containing polymer samples was determined by measuring the additional amount of vinyl-type unsaturation formed due to a Hoffman elimination reaction that takes place in the alkyl ammonium surfactant of the modified clay at elevated temperatures. The results indicate that OMMT is responsible for the higher levels of unsaturation found in OMMT-PE samples when compared to both the polymer control and the NaMMT-PE samples and confirms the instability of the alkyl ammonium surfactant during melt processing and its deleterious effects on the durability aspects of nanocomposite products. The photostability of the PE/clay nanocomposites under accelerated weathering conditions was monitored by following changes in their infrared signatures and mechanical properties. The rate of photo-oxidation of the compatibilised PE/PEgMA/OMMT nanocomposites was much higher than that of the PE/OMMT (in absence of PEgMA) counterparts, the polymer controls and the PE–NaMMT sample. Several factors have been observed that can explain the difference in the photo-oxidative stability of the PE/clay nanocomposites including the adverse role played by the thermal decomposition products of the alkyl ammonium surfactant, the photo-instability of PEgMA, unfavourable interactions between PEgMA and products formed in the polymer as a consequence of the degradation of the surfactant on the clay, as well as a contribution from a much higher extent of exfoliated structures, determined by TEM, formed with increasing UV-exposure times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology of PE/CL nanocomposite samples subjected to convergent flows is studied. Elongational flow – the typical flow involved in spinning and film-blowing processing operations – significantly increases with the reduction of the capillary diameter. The values of the convergent extensional stress (calculated by Cogswell's formula) for the PE/CL systems, for all the adopted capillary geometries, are greater than the calculated values for pure polyethylene. The applied convergent flow, at the entrance of the capillary, is able to change the clay morphology and consequently the final material properties on the PE/CL system with limited affinity between the matrix and organo-modified clay particles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfaces of bulk carbon nanotubes compacted by plasma spark sintering have been modified with polytetrofluorethylene, thereby producing a super-hydrophobic surface with a contact angle above 160°. The surface roughness and air trapped in pores and between the polytetrofluorethylene particles are responsible for the super-hydrophobility. The material can be machined into desired shapes with fine and complex channels, allowing internal surfaces to also be super-hydrophobic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation.In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low density lipoprotein levels (LDL) are consistently elevated in cardiovascular disease. It has been suggested that those with high circulating LDL levels in mid-life may be susceptible to develop neurodegenerative diseases in later life. In the circulation, high levels of LDL are associated with increased oxidative modification (oxLDL) and nitration. We have investigated the hypothesis that disruption of blood brain barrier function by oxLDL and their lipids may increase risk of neurodegeneration in later life and that statin intervention in mid-life can mitigate the neurodegenerative effects of hyperlipidaemia. Blood from statin-naïve, normo- and hyperlipidaemic subjects (n=10/group) was collected at baseline. Hyperlipidaemic subjects received statin-intervention whereas normolipidaemic subjects did not prior to a second blood sampling, taken after 3 months. The intervention will be completed in June 2013. Plasma was separated by centrifugation (200g, 30min) and LDL was isolated by potassium bromide density gradient ultracentrifugation. Total homocysteine, LDL cholesterol, 8-isoprostane F2α levels were measured in plasma using commercial kits. LDL were analysed by agarose gel electrophoresis. LDL-lipids were extracted by partitioning in 1:1 chloroform:methanol (v/v) and conjugated to fatty acid free-BSA in serum-free EGM-2 medium (4hrs, 370C) for co-culture with human microvascular endothelial cells (HMVEC). HMVEC were maintained on polycarbonate inserts for two weeks to create a microvascular barrier. Change in barrier permeability was measured by trans-endothelial electrical resistance (TER), FITC-dextran permeability and immunohistochemistry. HMVEC glutathione (GSH) levels were measured after 2 hours by GSH-glo assay. LDL isolated from statin-naïve hyperlipidaemic subjects had higher mobility by agarose gel electrophoresis (Rf;0.53±0.06) and plasma 8-isoprostane F2α (43.5±8.42 pg/ml) compared to control subjects (0.46±0.05 and 24.2±5.37 pg/ml; p<0.05). Compared to HMVEC treatment with the LDL-lipids (5μM) from normolipidaemic subjects, LDL-lipids from hyperlipidaemic subjects increased barrier permeability (103.4±12.5 Ωcm2 v 66.7±7.3 Ωcm2,P<0.01) and decreased GSH (18.5 nmol/mg v 12.3 nmol/mg; untreated cells 26.2±3.6 nmol/mg).