15 resultados para plasma spraying, surface modification, sphene, osteoblasts, titanium alloy

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact lens represents a well-established important class of biomaterials. This thesis brings together the literature, mostly Japanese and American patents, concerned with an important group of polymers, `rigid gas permeable contact lens materials'. A comparison is made of similarities in the underlying chemical themes, centring on the use of variants of highly branched siloxy compounds with polymerizable methacrylate groups. There is a need for standard techniques to assess laboratory behaviour in relation to in vitro performance. A major part of the present work is dedicated to the establishment of such standardised techniques. It is apparent that property design requirements in this field (i.e. oxygen permeability, surface and mechanical properties) are to some extent conflicting. In principle, the structural approaches used to obtain high oxygen permeability lead to surface properties that are less than ideal in terms of compatibility with tears. PMMA is known to have uniquely good (but not perfect) surface properties in this respect; it has been used as a starting point in attempting to design new materials that possess a more acceptable compromise of transport and surface properties for ocular use. Initial examination of the oxygen permeabilities of relatively simple alkyl methacrylates, show that butyl methacrylate which has a permeability some fifty times greater than PMMA, represents an interesting and hitherto unexplored group of materials for ophthalmic applications. Consideration was similarly given to surface modification techniques that would produce materials having the ability to sustain coherent tear film in the eye without markedly impairing oxygen transport properties. Particular attention is paid to the use of oxygen plasma techniques in this respect. In conclusion, similar design considerations were applied to an extended wear hydrogel lens material in an attempt to overcome mechanical stability deficiencies which manifest themselves lq`in vivo' but not `in vitro'. A relatively simple structure modification, involving steric shielding of the amide substituent group, proved to be an effective solution to the problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing evidence that non-enzymatic post-translational protein modifications might play key roles in various diseases. These protein modifications can be caused by free radicals generated during oxidative stress or by their products generated during lipid peroxidation. 4-Hydroxynonenal (HNE), a major biomarker of oxidative stress and lipid peroxidation, has been recognized as important molecule in pathology as well as in physiology of living organisms. Therefore, its detection and quantification can be considered as valuable tool for evaluating various pathophysiological conditions.The HNE-protein adduct ELISA is a method to detect HNE bound to proteins, which is considered as the most likely form of HNE occurrence in living systems. Since the earlier described ELISA has been validated for cell lysates and the antibody used for detection of HNE-protein adducts is non-commercial, the aim of this work was to adapt the ELISA to a commercial antibody and to apply it in the analysis of human plasma samples.After modification and validation of the protocol for both antibodies, samples of two groups were analyzed: apparently healthy obese (n=62) and non-obese controls (n=15). Although the detected absolute values of HNE-protein adducts were different, depending on the antibody used, both ELISA methods showed significantly higher values of HNE-protein adducts in the obese group. © 2013 The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides, which facilitates cell adhesion, migration and proliferation. In this study, we evaluated the cell adhesion properties of a tailored laminin-332 alpha3 chain tethered to a type I collagen scaffold using microbial transglutaminase (mTGase) by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide A: PPFLMLLKGSTREAQQIVM) or lysine (peptide B: PPFLMLLKGSTRKKKKG). The degree of cross-linking was studied by amino acid analysis following proteolytic digestion and the structural changes in the modified scaffold further investigated using Fourier transform infrared spectroscopy and atomic force microscopy. Fibroblasts were used to evaluate the cellular behaviour of the functionalized collagen scaffold. mTGase supports cell growth but tethering of peptide A and peptide B to the mTGase cross-linked collagen scaffold caused a significant increase in cell proliferation when compared with native and mTGase cross-linked collagen scaffolds. Both peptides enabled cell-spreading, attachment and normal actin cytoskeleton organization with slight increase in the cell proliferation was observed in peptide A when compared with the peptide B and mTGase cross-linked scaffold. An increase in the amount of epsilon(gamma-glutamyl) lysine isopeptide was observed in peptide A conjugated scaffolds when compared with peptide B conjugated scaffolds, mTGase cross-linked scaffold without peptide. Changes in D-spacing were observed in the cross-linked scaffolds with tethered peptides. These results demonstrate that mTGase can play a bifunctional role in both conjugation of the glutamine and lysine containing peptide sequences and also in the cross-linking of the collagen scaffold, thus providing a suitable substrate for cell growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes the design and synthesis of a variety of functionalised phosphine oxides and sulfides, based on the structure of trioctylphosphine oxide, synthesised for the purpose of surface modification of quantum dots. The ability of the ligands to modify the surface chemistry via displacement of the original hexadecylamine capping layer of quantum dots was evaluated. Finally the surface modified quantum dots were investigated for enhancement in their inherent properties and improved compatibility with the various applications for which they were initially designed. Upon the commencement of research involving quantum dots it became apparent that more information on their behaviour and interaction with the environment was required. The limits of the inherent stability of hexadecylamine capped quantum dots were investigated by exposure to a number of different environments. The effect upon the stability of the quantum dots was monitored by changes in the photoluminescence ability of their cores. Subtle differences between different batches of quantum dots were observed and the necessity to account for these in future applications noted. Lastly the displacement of the original hexadecylamine coating with the "designer" functionalised ligands was evaluated to produce a set of conditions that would result in the best possible surface modification. A general procedure was elucidated however it was discovered that each displacement still required slight adjustment by consideration of the other factors such as the difference in ligand structure and the individuality of the various batches of quantum dots. This thesis also describes a procedure for the addition of a protective layer to the surface of quantum dots by cross-linking the functionalised ligands bound to the surface via an acyclic diene metathesis polymerisation. A detailed description of the problems encountered in the analysis of these materials combined with the use of novel techniques such as diffusion ordered spectroscopy is provided as a means to overcome the limitations encountered. Finally a demonstration of the superior stability, upon exposure to a range of aggressive environments of these protected materials compared with those before cross-linking provided physical proof of the cross-linking process and the advantages of the cross-linking modification. Finally this thesis includes the presentation of initial work into the production of luminescent nanocrystal encoded resin beads for the specific use in solid phase combinatorial chemistry. Demonstration of the successful covalent incorporation of quantum dots into the polymeric matrices of non-functionalised and functionalised resin beads is described. Finally by preliminary work to address and overcome the possible limitations that may be encountered in the production and general employment of these materials in combinatorial techniques is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is advantageous to develop controlled release dosage forms utilising site-specific delivery or gastric retention for those drugs with frequent or high dosing regimes. Cimetidine is a potent and selective H2 -reception antagonist used in the treatment of various gastrointestinal disorders and localisation in the upper gastrointestinal tract could significantly improve the drug absorption. Three strategies were undertaken to prepare controlled release systems for the delivery of cimetidine to the GI tract. Firstly, increasing the contact time of the dosage form with the mucus layer which coats the gastrointestinal tract, may lead to increased gastric residence times. Mucoadhesive microspheres, by forming a gel-like structure in contact with the mucus, should prolong the contact between the delivery system and the mucus layer, and should have the potential for releasing the drug in sustained and controlled manner. Gelatin microspheres were prepared, optimised and characterised for their physicochemical properties. Crosslinking concentration, particle size and cimetidine loading influenced drug release profiles. Particle size was influenced by surfactant concentration and stirring speed. Mucoadheisve polymers such as alginates, chitosans, carbopols and polycarbophil were incorporated into the microspheres using different strategies. The mucoadhesion of the microspheres was determined using in vitro surface adsorption and ex vivo rat intestine models. The surface-modification strategy resulted in highest levels of microsphere adhesion, with chitosan, carbopols and polycarbophil as the most successful candidates for improvement of adhesion, with over 70% of the microspheres retained ex vivo. Specific targeting agent UEA I lectin was conjugated to the surface of gelatin microspheres, which enhanced the adhesion of the microspheres. Alginate raft systems containing antacids have been used extensively in the treatment of gastro-oesophageal disease and protection of the oesophageal mucosa from acid reflux by forming a viscous raft layer on the surface of the stomach content, and could be an effective delivery system for controlled release of cimetidine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminium alloys S1C, NS4, HE9, LM25 and the 'difficult' zinc containing U.S. specification alloy used for automobile bumpers (X-7046), have been successfully electroplated using pretreatments which utilized either conventional immersion, elevated temperature or electrolytic modified alloy zincate (M.A.Z.) deposits. Satisfactory adhesion in excess of 7•5 KN m -I was only achieved on X-7046 using an electrolytic M.A.Z. pretreatment. The limitations of simple zincate solutions were demonstrated. Growth of deposits ~as monitored using a weight loss technique and the morphology of the various deposits studied using scanning electron microscopy. The characteristics of a specific alloy and processing sequence selected had a significant influence on the growth and morphology of the N.A.Z. deposi t. These all affected subsequent adhesion of electrodeposited nickel. The advantages of double-dip sequences were confirmed. Superior adhesion was associated with a uniform, thin, fine grained M.A.Z. deposit which exhibited rapid and complete surface coverage of the aluminium alloy. The presence of this preferred type deposit did not guarantee adhesion because a certain degree of etching was essential. For a satisfactory combination of alloy and M.A.Z. pretreatment, there was a specific optimum film weight per unit area which resulted in maximum adhesion. An ideal film weight of 0•06 :!: 0•01 mg cm-2was determined for S1C. Different film weights were required for the other alloys due to variations in surface topography caused by pretreatment. S1C was the easiest alloy on which to achieve high bond strength. Peel adhesion was not directly related to tensile strength of the alloy. The highest adhesion value was obtained on S1C which had the lowest strength of the alloys studied. The characteristics of the failure surfaces after peeling depended on alloy type, adhesion level and pretreatment employed. Plated aluminium alloys exhibited excellent corrosion resistance when appropriately pretreated. The M.A.Z. layer was not preferentially attacked. There was a threshold value of adhesion below which corrosion performance ~a8 poor. Alloy type, pretreatment and coating system influenced corrosion performance. Microporous chromium gave better corrosion protection than decorative chromium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface modification techniques have been used to develop biomimetic scaffolds by incorporating cell adhesion peptides. In our previous work, we have shown the tethering of laminin-332 α3 chain to type I collagen scaffold using microbial transglutaminase (mTGase), promotes cell adhesion, migration, and proliferation. In this study, we evaluated the wound healing properties of tailored laminin-332 α3 chain (peptide A: PPFLMLLKGSTR) tethered to a type I collagen scaffold using mTGase by incorporating transglutaminase substrate peptide sequences containing either glutamine (peptide B: PPFLMLLKGSTREAQQIVM) or lysine (peptide C: PPFLMLLKGSTRKKKKG) in rat full-thickness wound model at two different time points (7 and 21 days). Histological evaluations were assessed for wound closure, epithelialization, angiogenesis, inflammatory, fibroblastic cellular infiltrations, and quantified using stereological methods (p < 0.05). Peptide A and B tethered to collagen scaffold using mTGase stimulated neovascularization, decreased the inflammatory cell infiltration and prominently enhanced the fibroblast proliferation which significantly accelerated the wound healing process. We conclude that surface modification by incorporating motif of laminin-332 α3 chain (peptide A: PPFLMLLK GSTR) domain and transglutaminase substrate to the laminin-332 α3 chain (peptide B: PPFLMLLKGSTREAQQIVM) using mTGase may be a potential candidate for tissue engineering applications and skin regeneration. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:2788-2795, 2013. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipids play a vital role in the body at many interfaces. Examples include the lubrication of articulating joints by synovial fluid, the coating of the lung by pulmonary surfactant and the functions of the tear film in the protection of the anterior eye. The role of the lipids is similar at each site - acting as boundary lubricants and reducing surface and interfacial tension. This review focuses on how and why contact lens wear can disrupt the normal function of lipids within the tear film and explains how the otherwise advantageous presence and function of tear lipids can become disadvantageous, causing problems for the wearer. Because the contact lens is some ten times thicker than the tear film, lipids deposited on the anterior surface become immobilised, reducing lipid turnover and thus leading to prolonged exposure to oxygen and light with consequent generation of degradation products. These degraded lipids reduce lens wettability and have additionally been linked to problems of contact lens discomfort and intolerance. Lipid problems are influenced by the thickness of the lens, the material, surface modification, mode of wear and ultimately the subject. The most influential of these variables is frequently the subject. © 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two different membrane emulsification methods were used to study mechanisms for co-stabilisation of emulsions, by either electrostatic or steric stabilised nanoparticles with anionic, cationic or non-ionic surfactants. The experimental results demonstrated the existence of two distinct co-stabilisation mechanisms that arise from interactions of the nanoparticles and surfactant molecules. When significant interaction is not involved, independent competitive adsorption of nanoparticles and surfactant molecules occurs spontaneously to stabilise droplets in formation. The adsorption/desorption equilibrium between surfactant molecules determines the longevity of the droplet stability. When the surfactant molecule reacts with the nanoparticle surface, the resultant surface modification appears to generate faster wetting kinetics for nanoparticles at the oil/water interface and yields enhanced stabilisation. The paper discusses the implications of controlling these interactions for emulsion production membrane systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface modification by means of nanostructures is of interest to enhance boiling heat transfer in various applications including the organic Rankine cycle (ORC). With the goal of obtaining rough and dense aluminum oxide (Al2O3) nanofilms, the optimal combination of process parameters for electrophoretic deposition (EPD) based on the uniform design (UD) method is explored in this paper. The detailed procedures for the EPD process and UD method are presented. Four main influencing conditions controlling the EPD process were identified as nanofluid concentration, deposition time, applied voltage and suspension pH. A series of tests were carried out based on the UD experimental design. A regression model and statistical analysis were applied to the results. Sensitivity analyses of the effect of the four main parameters on the roughness and deposited mass of Al2O3 films were also carried out. The results showed that Al2O3 nanofilms were deposited compactly and uniformly on the substrate. Within the range of the experiments, the preferred combination of process parameters was determined to be nanofluid concentration of 2 wt.%, deposition time of 15 min, applied voltage of 23 V and suspension pH of 3, yielding roughness and deposited mass of 520.9 nm and 161.6 × 10− 4 g/cm2, respectively. A verification experiment was carried out at these conditions and gave values of roughness and deposited mass within 8% error of the expected ones as determined from the UD approach. It is concluded that uniform design is useful for the optimization of electrophoretic deposition requiring only 7 tests compared to 49 using the orthogonal design method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The surfaces of bulk carbon nanotubes compacted by plasma spark sintering have been modified with polytetrofluorethylene, thereby producing a super-hydrophobic surface with a contact angle above 160°. The surface roughness and air trapped in pores and between the polytetrofluorethylene particles are responsible for the super-hydrophobility. The material can be machined into desired shapes with fine and complex channels, allowing internal surfaces to also be super-hydrophobic.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Pure poly(lactide-co-glycolide) and polystyrene surfaces are not very suitable to support cell adhesion/ spreading owing to their hydrophobic nature and low surface energy. The interior surfaces of large porous 3D scaffolds were modified and activated using radio-frequency, low-pressure air plasma. An increase in the wettability of the surface was observed after exposure to air plasma, as indicated by the decrease in the contact angles of the wet porous system. The surface composition of the plasma-treated polymers was studied using X-ray photoelectron spectroscopy. pH-dependent zeta-potential measurements confirm the presence of an increased number of functional groups. However, the plasma-treated surfaces have a less acidic character than the original polymer surfaces as seen by a shift in their isoelectric point. Zeta-potential, as well as contact angle measurements, on 3D scaffolds confirm that plasma treatment is a useful tool to modify the surface properties throughout the interior of large scaffolds. © 2008 Wiley Periodicals, Inc.