25 resultados para plasma glucose

em Aston University Research Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

C-terminal acylation of Lys(37) with myristic (MYR; tetradecanoic acid), palmitic (PAL; hexadecanoic acid) and stearic (octadecanoic acid) fatty acids with or without N-terminal acetylation was employed to develop long-acting analogues of the glucoregulatory hormone, glucose-dependent insulinotropic polypeptide (GIP). All GIP analogues exhibited resistance to dipeptidylpeptidase-IV (DPP-IV) and significantly improved in vitro cAMP production and insulin secretion. Administration of GIP analogues to ob/ob mice significantly lowered plasma glucose-GIP(Lys(37)MYR), N-AcGIP(Lys(37)MYR) and GIP(Lys(37)PAL) increased plasma insulin concentrations. GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) elicited protracted glucose-lowering effects when administered 24h prior to an intraperitoneal glucose load. Daily administration of GIP(Lys(37)MYR) and N-AcGIP(Lys(37)MYR) to ob/ob mice for 24 days decreased glucose and significantly improved plasma insulin, glucose tolerance and beta-cell glucose responsiveness. Insulin sensitivity, pancreatic insulin content and triglyceride levels were not changed. These data demonstrate that C-terminal acylation particularly with myristic acid provides a class of stable, longer-acting forms of GIP for further evaluation in diabetes therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Current therapies to reduce hyperglycaemia in type 2 diabetes mellitus (T2DM) mostly involve insulin-dependent mechanisms and lose their effectiveness as pancreatic ß-cell function declines. In the kidney, filtered glucose is reabsorbed mainly via the high-capacity, low-affinity sodium glucose cotransporter-2 (SGLT2) at the luminal surface of cells lining the first segment of the proximal tubules. Selective inhibitors of SGLT2 reduce glucose reabsorption, causing excess glucose to be eliminated in the urine; this decreases plasma glucose. In T2DM, the glucosuria produced by SGLT2 inhibitors is associated with weight loss, and mild osmotic diuresis might assist a reduction in blood pressure. The mechanism is independent of insulin and carries a low risk of hypoglycaemia. This review examines the potential of SGLT2 inhibitors as a novel approach to the treatment of hyperglycaemia in T2DM.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate the relationship between vascular function parameters measured at the retinal and systemic level and known markers for cardiovascular risk in patients with impaired glucose tolerance (IGT). Sixty age- and gender- matched White-European adults (30 IGT and 30 normal glucose tolerance -NGT) were recruited for the study. Fasting plasma glucose, lipids and 24-hour blood pressure (BP) was measured in all subjects. Systemic vascular and endothelial function was assessed using carotid-artery intimal media thickness (cIMT) and flow mediated dilation (FMD). Retinal vascular reactivity was assessed by the Dynamic Retinal Vessel Analyser (DVA). Additionally, blood glutathione (GSH, GSSG and tGSH) and plasma von-Willebrand (vWF) factor levels were also measured. Individuals with IGT demonstrated higher BP values (p<0.001), fasting TG and TG:HDL ratios (p<0.001) than NGT subjects. Furthermore, Total:HDL-C ratios and Framingham scores were raised (p=0.010 and p<0.001 respectively). Blood glutathione levels (GSH, GSSG and tGSH) were lower (p<0.001, p=0.039 and p<0.001 respectively) while plasma vWF was increased (p=0.014) in IGT subjects compared to controls. IGT individuals also demonstrated higher IMT in right and left carotid arteries (p=0.017 and p=0.005, respectively) alongside larger brachial artery diameter (p=0.015), lower FMD% (p=0.026) and GTN induced dilation (GID) (p=0.012) than healthy controls. At the retinal arterial level, the IGT subjects showed higher baseline fluctuations (BDF) (p=0.026), longer reaction time (RT) (p=0.032) and reduced baseline-corrected flicker response (bFR) (p=0.045). In IGT subjects retinal BDF correlated with and Total:HDL (p= 0.003) and HDL-C (p= 0.004). Arterial RT also correlated with FMD (p=0.017) in IGT but not NGT subjects. In IGT individuals there is a relationship between macro- and microvascular function, as well as a direct correlation between the observed retinal microcirculatory changes and established plasma markers for CVD. Multifactorial preventive interventions to decrease vascular risk in these individuals should be considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluates the antidiabetic potential of an enzyme-resistant analog, (Val8)GLP-1. The effects of daily administration of a novel dipeptidyl peptidase IV-resistant glucagon-like peptide-1 (GLP-1) analog, (Val8)GLP-1, on glucose tolerance and pancreatic β-cell function were examined in obese-diabetic (ob/ob) mice. Acute intraperitoneal administration of (Val8)GLP-1 (6.25-25 nmol/kg) with glucose increased the insulin response and reduced the glycemic excursion in a dose-dependent manner. The effects of (Val8)GLP-1 were greater and longer lasting than native GLP-1. Once-daily subcutaneous administration of (Val8)GLP-1 (25 nmol/kg) for 21 days reduced plasma glucose concentrations, increased plasma insulin, and reduced body weight more than native GLP-1 without a significant change in daily food intake. Furthermore, (Val8)GLP-1 improved glucose tolerance, reduced the glycemic excursion after feeding, increased the plasma insulin response to glucose and feeding, and improved insulin sensitivity. These effects were consistently greater with (Val8)GLP-1 than with native GLP-1, and both peptides retained or increased their acute efficacy compared with initial administration. (Val8)GLP-1 treatment increased average islet area 1.2-fold without changing the number of islets, resulting in an increased number of larger islets. These data demonstrate that (Val8)GLP-1 is more effective and longer acting than native GLP-1 in obese-diabetic ob/ob mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of nutritional supplementation is of increasing interest with regard to ocular disease. Randomised controlled trials have demonstrated the effectiveness of supplementation for age-related macular degeneration, and formulations are now being developed for use by people with diabetes and diabetic retinopathy. The aim of this review was to synthesise the evidence for use of nutritional supplementation in type 2 diabetes. MEDLINE and EMBASE databases were searched using a systematic approach. Only double-masked randomised controlled trials were selected. A total of 50 trials were identified as suitable for inclusion. The potential role of alpha-lipoic acid, chromium, folic acid, isoflavones, magnesium, Pycnogenol®, selenium, vitamin C, vitamin E, and zinc in the treatment of type 2 diabetes is discussed. The review of trials identifies positive effects of these nutrients on various outcome measures relating to insulin resistance and cardiovascular factors. Chromium was the most studied supplement, accounting for 16 of the 50 trials. A majority of the trials found a positive effect of chromium on fasting plasma glucose. Isoflavones were found to have a positive effect on insulin resistance and cardiovascular outcome measures, but only when combined with soy proteins. Vitamin E is reported to reduce oxidative stress at levels of 200 mg day-1 or more.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/aims To investigate ethnic differences in retinal vascular function and their relationship to traditional risk indicators for cardiovascular disease (CVD). Methods A total of 90 normoglycaemic subjects (45 South Asian (SA) and 45 age- and gender-matched white Europeans (WEs)) were recruited for the present study. Retinal vessel reactivity to flickering light was assessed by means of the dynamic retinal vessel analyser according to a modified protocol. Fasting plasma glucose, triglycerides (TG), total, LDL and HDL cholesterol were also measured in all individuals. Results SA individuals showed higher fasting triglyceride (p=0.001) and lower HDL levels (p=0.007), leading to a higher TG:HDL-C ratio (p=0.001) than age-matched WE subjects. Additionally, in SAs, the retinal arterial reaction time in response to flicker stimulation was significantly longer in the last flicker cycle than in the WEs (p=0.039), and this change correlated positively with measured plasma TG levels (r=0.60; p=0.01). No such relationship was observed in the WEs (p>0.05). Conclusion Even in the absence of overt vascular disease, in otherwise healthy SAs there are potential signs of retinal vascular function impairment that correlates with established plasma markers for CVD risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: The goal of the current study is to determine whether the ß-adrenoreceptor (ß-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-a2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human ß1-, ß2-, ß3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the ß3-AR with higher affinity (Kd 46±1nM) than the ß2-AR (Kd 71±3nM) while there was no binding to the ß1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various ß-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of ß3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of ß1- and ß2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific ß-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a ß-3AR, or possibly a ß2-AR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: Many patients with type 2 diabetes are suboptimally managed with currently available therapies. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, has shown efficacy in reducing diabetic hyperglycaemia. This study assessed efficacy of three lower doses in recently diagnosed patients. Methods: This phase 3, randomized, double-blind, placebo-controlled study assigned treatment-naïve patients to placebo or dapagliflozin monotherapy (1, 2.5 or 5 mg) daily for 24 weeks. Patients were antidiabetic drug-naïve with inadequate glycaemic control [haemoglobin A1c (HbA1c) =7.0 and =10.0%]. The primary efficacy endpoint was change in HbA1c from baseline. Secondary endpoints included changes in body weight and fasting plasma glucose (FPG), and proportions achieving HbA1c

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Management of type 2 diabetes with metformin often does not provide adequate glycemic control, thereby necessitating add-on treatment. In a 24-week clinical trial, dapagliflozin, an investigational sodium glucose cotransporter 2 inhibitor, improved glycemic control in patients inadequately controlled with metformin. The present study is an extension that was undertaken to evaluate dapagliflozin as long-term therapy in this population.Methods: This was a long-term extension (total 102 weeks) of a 24-week phase 3, multicenter, randomized, placebo-controlled, double-blind, parallel-group trial. Patients were randomly assigned (1:1:1:1) to blinded daily treatment (placebo, or dapagliflozin 2.5 to 5, or 10 mg) plus open-label metformin (=1,500 mg). The previously published primary endpoint was change from baseline in glycated hemoglobin (HbA1c) at 24 weeks. This paper reports the follow-up to week 102, with analysis of covariance model performed at 24 weeks with last observation carried forward; a repeated measures analysis was utilized to evaluate changes from baseline in HbA1c, fasting plasma glucose (FPG), and weight.Results: A total of 546 patients were randomized to 1 of the 4 treatments. The completion rate for the 78-week double-blind extension period was lower for the placebo group (63.5%) than for the dapagliflozin groups (68.3% to 79.8%). At week 102, mean changes from baseline HbA1c (8.06%) were +0.02% for placebo compared with -0.48% (P = 0.0008), -0.58% (P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE - A 12-week study assessed the efficacy and safety of a new oral antidiabetic agent, imeglimin, as add-on therapy in type 2 diabetes patients inadequately controlled with metformin alone. RESEARCH DESIGN AND METHODS - A total of 156 patients were randomized 1:1 to receive imeglimin (1,500mg twice a day) or placebo added to a stable dose of metformin (1,500-2,000 mg/day). Change in A1C from baseline was the primary efficacy outcome; secondary outcomes included fasting plasma glucose (FPG) and proinsulin/insulin ratio. RESULTS - After 12 weeks, the placebo-subtracted decrease in A1C with metformin-imeglimin was 20.44% (P <0.001). Metformin-imeglimin also significantly improved FPG and the proinsulin/insulin ratio from baseline (20.91 mg/dL and 27.5, respectively) compared with metformin-placebo (0.36 mg/dL and 11.81). Metformin-imeglimin therapy was generally welltolerated with a comparable safety profile to metformin-placebo. CONCLUSIONS - Addition of imeglimin to metformin improved glycemic control and offers potential as a new treatment for type 2 diabetes. Copyright © 2013 by the American Diabetes Association.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An imbalance between reactive oxygen species (ROS) production and antioxidant scavenging has been implicated in type 2 diabetes. ROS are a byproduct in type 2 diabetes, generated during protein glycation and as a consequence of advanced glycation end-products-receptor binding; they impair insulin signalling pathways and induce cytotoxicity in pancreatic beta cells. Neutralisation of oxidants by increased antioxidant availability may mitigate these effects. Several human intervention studies have been undertaken to determine whether dietary antioxidants exert beneficial effects for type 2 diabetes patients. This paper describes a systematic review and meta-analysis of the effects of dietary supplementation with antioxidant vitamins C or E on (1) plasma glucose and insulin concentrations, as an indicator of the capacity for antioxidant to interfere with disease process and (2) on glycated haemoglobin A as a measure of antioxidant effects on posttranslational protein modification implicated in disease complications. Combined analysis of 14 studies that met inclusion criteria revealed that dietary antioxidant supplementation did not affect plasma glucose or insulin levels, suggesting that they could not interfere with the pathogenesis of insulin resistance. However, HbA levels were significantly reduced by antioxidant supplementation, suggesting that antioxidants may have some benefit in protecting against the complications of type 2 diabetes. © 2011 The Author(s).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aimed to investigate the effects of the once-daily prandial GLP-1 receptor agonist lixisenatide on postprandial plasma glucose (PPG), glucagon and insulin levels. Methods: Six randomized, placebo-controlled studies of lixisenatide 20μg once daily were included in this analysis: lixisenatide as monotherapy (GetGoal-Mono), as add-on to oral antidiabetic drugs (OADs; GetGoal-M, GetGoal-S) or in combination with basal insulin (GetGoal-L, GetGoal-Duo-1 and GetGoal-L-Asia). Change in 2-h PPG and glucose excursion were evaluated across six studies. Change in 2-h glucagon and postprandial insulin were evaluated across two studies. A meta-analysis was performed on least square (LS) mean estimates obtained from analysis of covariance (ANCOVA)-based linear regression. Results: Lixisenatide significantly reduced 2-h PPG from baseline (LS mean difference vs. placebo: -4.9mmol/l, p<0.001) and glucose excursion (LS mean difference vs. placebo: -4.5mmol/l, p<0.001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs. placebo: -19.0ng/l, p<0.001) and insulin (LS mean difference vs. placebo: -64.8 pmol/l, p<0.001). There was a stronger correlation between 2-h postprandial glucagon and 2-h PPG with lixisenatide than with placebo. Conclusions: Lixisenatide significantly reduced 2-h PPG and glucose excursion together with a marked reduction in postprandial glucagon and insulin; thus, lixisenatide appears to have biological effects on blood glucose that are independent of increased insulin secretion. These effects may be, in part, attributed to reduced glucagon secretion. © 2014 John Wiley and Sons Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examines the actions of the novel enzyme-resistant, NH 2-terminally modified GIP analog (Hyp3)GIP and its fatty acid-derivatized analog (Hyp3)GIPLys16PAL. Acute effects are compared with the established GIP receptor antagonist (Pro3)GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor-transfected fibroblasts and in clonal pancreatic BRIN-BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulin-releasing effects of native GIP. Administration of once daily injections of (Hyp 3)GIP or (Hyp3)GIPLys16PAL for 14 days resulted in significantly lower plasma glucose levels (P < 0.05) after (Hyp 3)GIP on days 12 and 14 and enhanced glucose tolerance (P < 0.05) and insulin sensitivity (P < 0.05 to P < 0.001) in both groups by day 14. Both (Hyp3)GIP and (Hyp3)GIPLys16PAL treatment also reduced pancreatic insulin (P < 0.05 to P < 0.01) without affecting islet number. These data indicate that (Hyp3)GIP and (Hyp 3)GIPLys16PAL function as GIP receptor antagonists with potential for ameliorating obesity-related diabetes. Acylation of (Hyp 3)GIP to extend bioactivity does not appear to be of any additional benefit. Copyright © 2007 the American Physiological Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His7-modified analogue of GLP-1, N-pyroglutamyl-GLP-1 as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50-37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P< 0.05 to P< 0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes. © 2004 Society for Endocrinology.