9 resultados para plant water relations
em Aston University Research Archive
Resumo:
The thrust of the argument presented in this chapter is that inter-municipal cooperation (IMC) in the United Kingdom reflects local government's constitutional position and its exposure to the exigencies of Westminster (elected central government) and Whitehall (centre of the professional civil service that services central government). For the most part councils are without general powers of competence and are restricted in what they can do by Parliament. This suggests that the capacity for locally driven IMC is restricted and operates principally within a framework constructed by central government's policy objectives and legislation and the political expediencies of the governing political party. In practice, however, recent examples of IMC demonstrate that the practices are more complex than this initial analysis suggests. Central government may exert top-down pressures and impose hierarchical directives, but there are important countervailing forces. Constitutional changes in Scotland and Wales have shifted the locus of central- local relations away from Westminster and Whitehall. In England, the seeding of English government regional offices in 1994 has evolved into an important structural arrangement that encourages councils to work together. Within the local government community there is now widespread acknowledgement that to achieve the ambitious targets set by central government, councils are, by necessity, bound to cooperate and work with other agencies. In recent years, the fragmentation of public service delivery has affected the scope of IMC. Elected local government in the UK is now only one piece of a complex jigsaw of agencies that provides services to the public; whether it is with non-elected bodies, such as health authorities, public protection authorities (police and fire), voluntary nonprofit organisations or for-profit bodies, councils are expected to cooperate widely with agencies in their localities. Indeed, for projects such as regeneration and community renewal, councils may act as the coordinating agency but the success of such projects is measured by collaboration and partnership working (Davies 2002). To place these developments in context, IMC is an example of how, in spite of the fragmentation of traditional forms of government, councils work with other public service agencies and other councils through the medium of interagency partnerships, collaboration between organisations and a mixed economy of service providers. Such an analysis suggests that, following changes to the system of local government, contemporary forms of IMC are less dependent on vertical arrangements (top-down direction from central government) as they are replaced by horizontal modes (expansion of networks and partnership arrangements). Evidence suggests, however that central government continues to steer local authorities through the agency of inspectorates and regulatory bodies, and through policy initiatives, such as local strategic partnerships and local area agreements (Kelly 2006), thus questioning whether, in the case of UK local government, the shift from hierarchy to network and market solutions is less differentiated and transformation less complete than some literature suggests. Vertical or horizontal pressures may promote IMC, yet similar drivers may deter collaboration between local authorities. An example of negative vertical pressure was central government's change of the systems of local taxation during the 1980s. The new taxation regime replaced a tax on property with a tax on individual residency. Although the community charge lasted only a few years, it was a highpoint of the then Conservative government policy that encouraged councils to compete with each other on the basis of the level of local taxation. In practice, however, the complexity of local government funding in the UK rendered worthless any meaningful ambition of councils competing with each other, especially as central government granting to local authorities is predicated (however imperfectly) on at least notional equalisation between those areas with lower tax yields and the more prosperous locations. Horizontal pressures comprise factors such as planning decisions. Over the last quarter century, councils have competed on the granting of permission to out-of-town retail and leisure complexes, now recognised as detrimental to neighbouring authorities because economic forces prevail and local, independent shops are unable to compete with multiple companies. These examples illustrate tensions at the core of the UK polity of whether IMC is feasible when competition between local authorities heightened by local differences reduces opportunities for collaboration. An alternative perspective on IMC is to explore whether specific purposes or functions promote or restrict it. Whether in the principle areas of local government responsibilities relating to social welfare, development and maintenance of the local infrastructure or environmental matters, there are examples of IMC. But opportunities have diminished considerably as councils lost responsibility for services provision as a result of privatisation and transfer of powers to new government agencies or to central government. Over the last twenty years councils have lost their role in the provision of further-or higher-education, public transport and water/sewage. Councils have commissioning power but only a limited presence in providing housing needs, social care and waste management. In other words, as a result of central government policy, there are, in practice, currently far fewer opportunities for councils to cooperate. Since 1997, the New Labour government has promoted IMC through vertical drivers and the development; the operation of these policy initiatives is discussed following the framework of the editors. Current examples of IMC are notable for being driven by higher tiers of government, working with subordinate authorities in principal-agent relations. Collaboration between local authorities and intra-interand cross-sectoral partnerships are initiated by central government. In other words, IMC is shaped by hierarchical drivers from higher levels of government but, in practice, is locally varied and determined less by formula than by necessity and function. © 2007 Springer.
Resumo:
The decade since 1979 has seen the most rapid introduction of microelectronic technology in the workplace. In particular, the scope offered for the application of this new technology to the area of white collar work has meant that it is a sector where trade unions have been confronted with major challenges. However the application of this technology has also provided trade unions with opportunities for exerting influence to reshape traditional attitudes to both industrial relations and the nature of work. Recent academic research on the trade union response to the introduction of new technology at the workplace suggests that, despite the resources and apparent sophistication of modern trade unions, they have not in general been able to take advantage of the opportunities offered during this period of radical technological change,the argument being that this is due both to structural weaknesses and the inappropriateness of the system of collective bargaining where new technology issues are concerned. Despite the significance of the Public Sector in employment terms, research into the response of public sector white collar trade unions to technological change has been fairly limited. This thesis sets out the approach of the National and Local Government Officers Association (NALGO), the largest solely white collar union in the world with over three quarters of a million members employed in a wide range of public service industries. The thesis examines NALGO's response at national level and, through detailed case studies, at local level in respect of Local Government and Water Industry NALGO members. The response is then evaluated and conclusions drawn in terms of a framework based upon an assessment of the key factors relevant in judging the ability of NALGO to respond effectively to the challenges brought about by the technological revolution of the last ten years.
Resumo:
The soil-plant-moisture subsystem is an important component of the hydrological cycle. Over the last 20 or so years a number of computer models of varying complexity have represented this subsystem with differing degrees of success. The aim of this present work has been to improve and extend an existing model. The new model is less site specific thus allowing for the simulation of a wide range of soil types and profiles. Several processes, not included in the original model, are simulated by the inclusion of new algorithms, including: macropore flow; hysteresis and plant growth. Changes have also been made to the infiltration, water uptake and water flow algorithms. Using field data from various sources, regression equations have been derived which relate parameters in the suction-conductivity-moisture content relationships to easily measured soil properties such as particle-size distribution data. Independent tests have been performed on laboratory data produced by Hedges (1989). The parameters found by regression for the suction relationships were then used in equations describing the infiltration and macropore processes. An extensive literature review produced a new model for calculating plant growth from actual transpiration, which was itself partly determined by the root densities and leaf area indices derived by the plant growth model. The new infiltration model uses intensity/duration curves to disaggregate daily rainfall inputs into hourly amounts. The final model has been calibrated and tested against field data, and its performance compared to that of the original model. Simulations have also been carried out to investigate the effects of various parameters on infiltration, macropore flow, actual transpiration and plant growth. Qualitatively comparisons have been made between these results and data given in the literature.
Resumo:
The control of cellular water flow is mediated by the aquaporin (AQP) family of membrane proteins. The family's structural features and the mechanism of selective water passage through the AQP pore are established, but there remains a gap in our knowledge of how water transport is regulated. Two broad possibilities exist. One is controlling the passage of water through the AQP pore, but this has only been observed as a phenomenon in some plant and microbial AQPs. An alternative is controlling the number of AQPs in the cell membrane. Here we describe a novel pathway in mammalian cells whereby a hypotonic stimulus directly induces intracellular calcium elevations, through transient receptor potential channels, that trigger AQP1 translocation. This translocation, which has a direct role in cell volume regulation, occurs within 30s and is dependent on calmodulin activation and phosphorylation of AQP1 at two threonine residues by protein kinase C. This direct mechanism provides a rationale for the changes in water transport that are required in response to constantly-changing local cellular water availability. Moreover, since calcium is a pluripotent and ubiquitous second messenger in biological systems, the discovery of its role in the regulation of AQP translocation has ramifications for diverse physiological and pathophysiological processes, as well as providing an explanation for the rapid regulation of water flow that is necessary for cell homeostasis.
Resumo:
Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.
Resumo:
This study presents design and construction of a tri-generation system (thermal efficiency, 63%), powered by neat nonedible plant oils (jatropha, pongamia and jojoba oil or standard diesel fuel), besides studies on plant performance and economics. Proposed plant consumes fuel (3 l/h) and produce ice (40 kg/h) by means of an adsorption refrigerator powered from the engine waste jacket water heat. Potential savings in green house gas (GHG) emissions of trigeneration system in comparison to cogeneration (or single generation) has also been discussed.
Resumo:
We describe a polygeneration system that can run on neat plant oils, such as Jatropha and Pongamia, or standard diesel fuel. A prototype has been constructed using a compression ignition engine of 9.9 kW shaft output. It consumes 3 L/h of fuel and will produce 40 kg/h of ice by means of an adsorption refrigerator powered from the engine jacket heat. Steaming of rice, deep and shallow frying, and other types of food preparation heated by the exhaust gas have been demonstrated. In addition, the feasibility of producing distilled water by means of multiple-effect distillation powered by the engine waste heat is shown. Overall plant efficiency and potential savings in greenhouse gas emissions are discussed. © 2012 Elsevier Ltd.
Resumo:
Background - Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. Scope of review - AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions - AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance - Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.
Resumo:
Desalination is a costly means of providing freshwater. Most desalination plants use either reverse osmosis (RO) or thermal distillation. Both processes have drawbacks: RO is efficient but uses expensive electrical energy; thermal distillation is inefficient but uses less expensive thermal energy. This work aims to provide an efficient RO plant that uses thermal energy. A steam-Rankine cycle has been designed to drive mechanically a batch-RO system that achieves high recovery, without the high energy penalty typically incurred in a continuous-RO system. The steam may be generated by solar panels, biomass boilers, or as an industrial by-product. A novel mechanical arrangement has been designed for low cost, and a steam-jacketed arrangement has been designed for isothermal expansion and improved thermodynamic efficiency. Based on detailed heat transfer and cost calculations, a gain output ratio of 69-162 is predicted, enabling water to be treated at a cost of 71 Indian Rupees/m3 at small scale. Costs will reduce with scale-up. Plants may be designed for a wide range of outputs, from 5 m3/day, up to commercial versions producing 300 m3/day of clean water from brackish groundwater.